• Title/Summary/Keyword: N adsorption

Search Result 1,007, Processing Time 0.026 seconds

Evaluation of Design of Experiments to Develop MOF-5 Adsorbent for Acetylene Capture

  • Min Hyung Lee;Sangmin Lee;Kye Sang Yoo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.322-327
    • /
    • 2023
  • A design of experiments was evaluated in optimizing MOF-5 synthesis for acetylene adsorption. At first, mixture design was used to optimize precursor concentration, terephthalic acid, zinc acetate dihydrate and N,N-dimethylformamide. More specifically, 13 conditions with various molar ratios were designed by extreme vertices design method. After preparing the samples, XRD, N2 physisorption and SEM analysis were performed for their characterization. Moreover, acetylene adsorption experiments were carried out over the samples under identical conditions. The optimal precursor composition for MOF-5 synthesis was predicted on a molar basis as follows: terephthalic acid : acetate dihydrate : dimethylformamide = 0.1 : 0.4 : 0.5. Thereafter, multi-level factorial design was designated to investigate the effect of synthesis reaction conditions such as temperature, time and stirring speed. By the statistical analysis of 18 samples designed, 4 reaction parameters were determined for additional adsorption experiments. Therefore, MOF-5 prepared under the synthesis time and temperature of 100 ℃ and 12 h, respectively, showed the maximum adsorption capacity of 15.1 mmol/g.

Nitrate and Phosphate Adsorption Properties by Aminated Vinylbenzyl Chloride Grafted Polypropylene Fiber (아민형 PP-g-VBC의 NO3-N과 PO4-P 흡착특성)

  • Lee, Yong-Jae;Song, Jee-June;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.543-550
    • /
    • 2016
  • Amine-type PP-g-VBC-EDA adsorbent, which possesses anionic exchangeable function, was prepared through photoinduced graft polymerization of vinylbenzyl chloride (VBC) onto polypropylene non-woven fabric and subsequent amination reaction using ethylenediamine (EDA). Adsorption characteristics of anionic nutrients on the PP-g-VBC-EDA adsorbent have been studied by batch adsorption experiments. The equilibrium data well fitted the Langmuir isotherm model, and the maximum monolayer sorption capacity was found to be 59.9 mg/g for $NO_3-N$ and 111.4 mg/g for $PO_4-P$. The adsorption energies were higher than 8 kJ/mol indicating anion-exchange process as the primary adsorption mechanism. The pseudo-second order kinetic model described well the kinetic data and resulted in the activation energy of 9.8-36.7 kJ/mol suggesting that the overall rates of $NO_3-N$ and $PO_4-P$ adsorption are controlled by the chemical process. Thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$ and ${\Delta}S^o$ indicated that the adsorption nature of PP-g-VBC-EDA for anionic nutrients is spontaneous and exothermic. The PP-g-VBC-EDA could be regenerated by washing with 0.1 N HCl.

Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon (활성탄에 의한 Congo Red의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Batch experiment studies were carried out for adsorption of congo red using granular activated carbon with various parameters such as activated carbon dose, pH, initial dye concentration, temperature and contact time. Equilibrium experimental data are fitted to the Langmuir, Freundlich, Temkin and Dubin-Radushkevich isotherm equations. From Freundlich's separation factor (1/n) estimated, adsorption could be employed as effective treatment method for adsorption of congo red from aqueous solution. Base on Temkin constant (B) and Dubinin-Radushkevich constant (E), this adsorption process is physical adsorption. Adsorption kinetics has been tested using pseudo-first order and pseudo second order models. The results followed pseudo second order model with good correlation. Adsorption process of congo red on granular activated carbon was endothermic (${\Delta}H$=42.036 kJ/mol) and was accompanied by decrease in Gibbs free energy (${\Delta}G$=-2.414 to -4.596 kJ/mol) with increasing adsorption temperature.

Equilibrium Kinetics and Thermodynamic Parameters Studies for Eosin Yellow Adsorption by Activated Carbon (활성탄에 의한 Eosin Yellow의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3319-3326
    • /
    • 2014
  • Eosin yellow is used a dye and colorant but it is harmful toxic substance. In this paper, batch adsorption studies were carried out for equilibrium, kinetics and thermodynamic parameters for eosin yellow adsorption by activated carbon with varying the operating variables like pH, initial concentration, contact time. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. By estimated Langmuir constant value, $R_L$=0.067-0.083, and Freundlich constant value, $\frac{1}{n}=0.237-0.267$, this process could be employed as effective treatment for removal of eosin yellow. From calculated Temkin constant, value, B=1.868-2.855 J/mol, and Dubinin-Radushkevich constant, value, E=5.345-5.735 kJ/mol, this adsorption process is physical adsorption. From kinetic experiments, the adsorption process were found to confirm to the pseudo second order model with good correlation coefficient($r^2$=0.995-0.998). The mechanism of the adsorption process was determined two step like as boundary and intraparticle diffusion.

Effects of Carbon, Nitrogen, Phosphorus, and Biocides on Phosphorus Adsorption in Highly Weathered Soils (탄소, 질소, 인 및 살균제가 고도로 풍화된 토양의 인 흡착에 미치는 영향)

  • Lee, Do-won;Carl F. Jordan
    • The Korean Journal of Ecology
    • /
    • v.17 no.4
    • /
    • pp.425-434
    • /
    • 1994
  • After two highly weathered soils were treated with glucose, ammonium nitrate, monobasic potassium phosphate and biocides, and incubated for 4 or 6 weeks, adsorption tests were carried out to determine their effect on P adsorption. Glucose addition generally decreased P adsorption. The addition stimulated microbial activity, which might contribure to the reduced adsorption, probably through chelation and anion competition. Consistent endency was not observed with N treatment. Addition of P initially decreased P adsorption, probably through blockage of adsorption sites. Biocides generally decreased adsorption, probably because the microbes that 몬 been killed. Soil 1 with naturally lower levels of C and higher levels of aluminium adsorbed more P than soil 2. These results suggest that in highly weathered soils, which are low in available P and high in exchangeable Al, cultivation techniques which increase soil organic matter will also result in higher levels of plant-available P.

  • PDF

Adsorption-Desorption Characteristics of NO, $N_2O$ and $O_2$ over Mixed Oxide Catalysts of AlCoPd (1/1/0.05) and AlCoFe (1/1/2) (AICoPd (1/1/0.05) 및 AICoFe (1/1/2)의 혼합금속산화물 촉매에 의한 NO, $N_2O$$O_2$의 흡탈착 특성 연구)

  • Han, A-Reum;Hwang, Young-Ae;Chang, Kil-Sang
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.142-149
    • /
    • 2011
  • The adsorption and desorption behaviors of NO and $N_2O$ over two mixed oxide catalysts, AlCoPd (1/1/0.05) and AlCoFe (1/1/2), have been investigated for the lean $NO_x$ trap applications. The catalysts showed good adsorption capabilities for NO and $N_2O$ without needing oxidation step. The adsorption decreased a lot when they are co-adsorbed with oxygen. While NO kept high adsorbability and selectivity with respect to oxygen, those of $N_2O$ decreased sharply. From the TPD results, NO and $N_2O$ are considered to decompose into nitrogen and oxygen in the higher temperature range and the oxygen seems to be strongly attached to the catalysts even at high temperature.

Nitrogen Adsorption Characteristics of Chemical-treated and Metal Ion-exchanged Natural Zeolite (화학처리 및 금속이온 교환된 천연 제올라이트의 질소 흡착특성)

  • Lee, Jae-Young;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1024-1029
    • /
    • 1994
  • The characteristics of the nitrogen adsorption with natural zeolite produced in Kampo area according to the chemical treatment by HCl and/or NaOH or the exchanging metal ion were investigated in the pressure range of 100~760torr at $25^{\circ}C$. The amount of nitrogen adsorption was followed at increment in the order of NaOH treatment>nontreatment>HCl treatment. Adsorption amount on natural zeolite treated with 0.5N-HCl/NaOH was improved about 200%, whereas that on natural zeolite treated with 0.5N-NaOH/HCl was decreased. When metal ion of natural zeolite was exchanged with $Na^+$, $K^+$ and $Cs^+$, adsorption amount of nitrogen was decreased as the size of cation was increased. But metal ion of natural zeolite was exchanged with $Mg^{2+}$, $Ca^{2+}$ and $Ba^{2+}$, the amount of nitrogen adsorption was increased.

  • PDF

Hydrogen Storage by Carbon Fibers Synthesized by Pyrolysis of Cotton Fibers

  • Sharon, Maheshwar;Sharon, Madhuri;Kalita, Golap;Mukherjee, Bholanath
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.39-43
    • /
    • 2011
  • Synthesis of carbon fibers from cotton fiber by pyrolysis process has been described. Synthesis parameters are optimized using Taguchi optimization technique. Synthesized carbon fibers are used for studying hydrogen adsorption capacity using Seivert's apparatus. Transmission electron microscopy analysis and X-ray diffraction of carbon fiber from cotton suggested it to be very transparent type material possessing graphitic nature. Carbon synthesized from cotton fibers under the conditions predicted by Taguchi optimization methodology (no treatment of cotton fiber prior to pyrolysis, temperature of pyrolysis $800^{\circ}C$, Argon as carrier gas and paralyzing time for 2 h) exhibited 7.32 wt% hydrogen adsorption capacity.

Thr Adsorption and Decomposition of NO on a Stepped Pt(111) Surface

  • Lee, S. B.;Kang, D. H.;Park, C. Y.;Kwak, H. T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.157-163
    • /
    • 1995
  • The adsorption and decomposition of NO on a stepped Pt(111) surface have been studied using thermal desorption spectroscopy and Auger electron spectroscopy. NO adsorbs molecularly in two different states of the terrace and the step, which are distinguishable in thermal desorption spectra. NO dissociates via a bent species at the step sites on the basis of vibrational spectrum data reported previously. The dissociation of NO is an activation process : the activation energy is estimated to be about 2 kcal/mol. Increase in the NO dissociation with adsorption temperature is explained by a process controlled by diffusion of the dissociated atomic nitrogen from the step to the terrace of the surface. In addition to NO and N2, the desorption peak of N2O is observed. We conclude that the formation of N2O is attributed to surface reaction of NO and N adsorbed on the surface.

Electro-chemical Removal Properties of Water Pollutants by Ag-ACF from Piggery Waste

  • Oh, Won-Chun;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • The electro-chemical removal (ECR) of water pollutants by metal-ACF electrodes from wastewater was investigated over wide range of ECR time. The ECR capacities of metallic ACF electrodes were related to physical properties such as adsorption isotherm, surface area and pore size and to reaction time. Surface morphologies and elemental analysis for the metal supported ACFs after electro-catalytic reaction were investigated by scanning electron microscopy (SEM) and energy disperse X-ray (EDX) to explain the changes in adsorption properties. The IR spectra of metallic ACFs for the investigation of functional groups show that the electro-catalytic treatment is consequently associated with the removal of pollutants with the increasing surface reactivity of the activated carbon fibers. The metal-ACFs were electro-catalytically reacted to waste water to investigate the removal efficiency for the COD, T-N, $NH_4$-N, $NO_3$-N and $NO_2$-N. From these removal results of the piggery waste using metallic ACFs substrate, satisfactory removal performance was achieved. The removal efficiency of the metallic ACFs substrate was mainly determined by the properties of the material for adsorption and trapping of organics, and catalytic effects.

  • PDF