DOI QR코드

DOI QR Code

Adsorption-Desorption Characteristics of NO, $N_2O$ and $O_2$ over Mixed Oxide Catalysts of AlCoPd (1/1/0.05) and AlCoFe (1/1/2)

AICoPd (1/1/0.05) 및 AICoFe (1/1/2)의 혼합금속산화물 촉매에 의한 NO, $N_2O$$O_2$의 흡탈착 특성 연구

  • Received : 2011.06.09
  • Accepted : 2011.06.20
  • Published : 2011.06.30

Abstract

The adsorption and desorption behaviors of NO and $N_2O$ over two mixed oxide catalysts, AlCoPd (1/1/0.05) and AlCoFe (1/1/2), have been investigated for the lean $NO_x$ trap applications. The catalysts showed good adsorption capabilities for NO and $N_2O$ without needing oxidation step. The adsorption decreased a lot when they are co-adsorbed with oxygen. While NO kept high adsorbability and selectivity with respect to oxygen, those of $N_2O$ decreased sharply. From the TPD results, NO and $N_2O$ are considered to decompose into nitrogen and oxygen in the higher temperature range and the oxygen seems to be strongly attached to the catalysts even at high temperature.

혼합금속산화물인 AlCoPd (1/1/0.05) 및 AlCoFe (1/1/2) 촉매의 Lean $NO_x$ Trap (LNT) 적용을 위하여 NO 및 $N_2O$에 대한 흡착 및 탈착 특성을 살펴보았다. 이들은 NO 및 $N_2O$에 대해 산화 과정 없이도 NO를 잘 흡착하는 성능을 나타냈다. 산소가 공존하는 복합 성분의 흡착에서는 흡착량이 많이 떨어졌지만 NO의 경우 산소대비 높은 선택성과 흡착능을 유지한 반면 $N_2O$의 선택성과 흡착능은 급격히 떨어지는 양상을 나타냈다. 또한 TPD로 살펴본 탈착 특성에서는 고온 영역에서 NO 및 $N_2O$성분이 분해되며 생성된 산소 성분 등이 높은 온도에서도 촉매에 강하게 결합되어 있는 것으로 파악되었다.

Keywords

References

  1. Nevison, C., "Review of the IPCC Methodology for Estimating Nitrous Oxide Emissions Associated with Agricultural Leaching and Runoff," Chemosphere-Global Change Sci., 2, 493-500 (2000). https://doi.org/10.1016/S1465-9972(00)00013-1
  2. Scott, M. J., Sands, R. D., Rosenberg, N. J., and Izaurralde, R. C., "Future $N_{2}O$ from US Agriculture: Projecting Effects of Changing Land Use, Agricultural Technology, and Climate on $N_{2}O$ Emissions," Global Environ. Change, 12, 105-115 (2002). https://doi.org/10.1016/S0959-3780(02)00005-5
  3. Jeong, S. K., Park, T. S., and Hong, S. C., "Selective Catalytic Reduction of NO on Manganese Sulfate," Korean Chem. Eng. Res., 46, 473-479 (2008).
  4. Suna, B.-Z., Chena, W.-K., Wang, X., and Lu, C.-H., "A Density Functional Theory Study on the Adsorption and Dissociation of $N_{2}O$ on $Cu_{2}O$(111) Surface," Appl. Surf. Sci., 253, 7501-7505 (2007). https://doi.org/10.1016/j.apsusc.2007.03.042
  5. Chang, K. S., and You, K.-C., "The Effects of $SO_{2}$ and $NH_{3}$ on the $N_{2}O$ Reduction with CO over MMO Catalyst," J. Korean Ind. Eng. Chem., 20, 653-657 (2009).
  6. Yang, K. S., and Chang, K. S., "Effects of Ceria and CO Reductant on $N_{2}O$ Decomposition over Layered Mixed Oxide Catalysts," Clean Tech., 16, 239-246 (2010).
  7. Yates, M., Martin, J. A., Martin-Luengo, A., Suarez, S., and Blanco, J., "$N_{2}O$ Formation in the Ammonia Oxidation and in the SCR Process with $V_{2}O_{5}-WO_{3}$ Catalysts," Catal. Today, 107-108, 120-125 (2005). https://doi.org/10.1016/j.cattod.2005.07.015
  8. Rivallan, M., Ricchiardi, G., Bordiga, S., and Zecchina, A., "Adsorption and Reactivity of Nitrogen Oxides ($NO_{2}$, NO, $N_{2}O$) on Fe-zeolites," J. Catal., 264, 104-116 (2009). https://doi.org/10.1016/j.jcat.2009.03.012
  9. Holles, J. H., Davis, R. J., Murray, T. M., and Howey, J. M., "Effects of Pd Particle Size and Ceria Loading on NO Reduction with CO," J. Catal., 195, 193-206 (2000). https://doi.org/10.1006/jcat.2000.2985
  10. Tronconi, P. E., Nova, I., Ciardelli, C., Chatterjee, D., and Weibel, M., "Redox Features in the Catalytic Mechanism of the "Standard" and "Fast" $NH_{3}$-SCR of $NO_{x}$ Over a V-based Catalyst Investigated by Dynamic Methods," J. Catal., 245, 1-10 (2007). https://doi.org/10.1016/j.jcat.2006.09.012
  11. Ciardelli, C., Nova, I., Tronconi, E., Chatterjee, D., Burkhardt, T., and Weibel, M., "$NH_{3}$ SCR of $NO_{x}$ for Diesel Exhausts Aftertreatment: Role of $NO_{2}$ in Catalytic Mechanism, Unsteady Kinetics and Monolith Converter Modelling," Chem. Eng. Sci., 62, 5001-5006 (2007). https://doi.org/10.1016/j.ces.2006.11.031
  12. Olympiou, G. G., and Efstathiou, A. M., "Industrial $NO_{x}$ Control via $H_{2}$-SCR on a Novel Supported-Pt Nanocatalyst," Chem. Eng. J., 170, 424-432 (2011). https://doi.org/10.1016/j.cej.2011.01.001
  13. Ciardelli, C., Nova, I., Tronconi, E., Konrad, B., Chatterjee, D., Ecke, K., and Weibel, M., "SCR-$DeNO_{x}$ for Diesel Engine Exhaust Aftertreatment: Unsteady-state Kinetic Study and Monolith Reactor Modelling," Chem. Eng. Sci., 59, 5301-5309 (2004). https://doi.org/10.1016/j.ces.2004.07.016
  14. Cant, N. W., Liu, I. O. Y., and Patterson, M. J., "The Effect of Proximity between Pt and BaO on Uptake, Release, and Reduction of $NO_{x}$ on Storage Catalysts," J. Catal., 243, 309-317 (2006). https://doi.org/10.1016/j.jcat.2006.07.030
  15. Szailer, T., Kwak, J. H., Kim, D. H., Hanson, J. C., Peden, C. H. F., and Szanyi, J., "Reduction of Stored $NO_{x}$ on Pt/$Al_{2}O_{3}$ and Pt/BaO/$Al_{2}O_{3}$ Catalysts with $H_{2}$ and CO," J. Catal., 239, 51-64 (2006). https://doi.org/10.1016/j.jcat.2006.01.014
  16. Dawody, J., Skoglundh, M., Olsson, L., and Fridell, E., "Kinetic Modelling of Sulfur Deactivation of Pt/BaO/$Al_{2}O_{3}$ and BaO/$Al_{2}O_{3}$ $NO_{x}$ Storage Catalysts," Appl. Catal. B: Environ., 70, 179-188 (2007). https://doi.org/10.1016/j.apcatb.2005.11.021
  17. Su, Y., Kabin, K. S., Harold, M. P., and Amiridis, M. D., "Reactor and in Situ FTIR Studies of Pt/BaO/$Al_{2}O_{3}$ and Pd/BaO/$Al_{2}O_{3}$ $NO_{x}$ Storage and Reduction (NSR) Catalysts," Appl. Catal. B: Environ., 71, 207-215 (2007). https://doi.org/10.1016/j.apcatb.2006.09.006
  18. Seo, C.-K. Kim, H., Choi, B., Lim, M. T., Lee, C.-H., and Lee, C.-B., "De-$NO_{x}$ Characteristics of a Combined System of LNT and SCR Catalysts According to Hydrothermal Aging and Sulfur Poisoning," Catal. Today, 164, 507-514 (2011). https://doi.org/10.1016/j.cattod.2010.10.010
  19. Artioli, N., Matarrese, R., Castoldi, L., Lietti, L., and Forzatti, P., "Effect of Soot on the Storage-reduction Performances of PtBa/$Al_{2}O_{3}$ LNT Catalyst," Catal. Today, 169, 36-44 (2011). https://doi.org/10.1016/j.cattod.2010.10.062
  20. Peng, X., Yang, K.-S., and Chang, K. S., "Application of Mixed Oxide Catalysts to the Removal of Lean $NO_{x}$ and $N_{2}O$ Using Transient-Mode Cyclic Operations," J. Nanosci. Nanotechnol., DOI 10.1166/jnn.2011.4512. (2011).
  21. Wang, Z., Sklyarov, A. V., and Keulks, G. W., "TPD Study of the Interaction of Oxygen and NO with Reduced Cu/ZSM-5," Catal. Today, 33, 291-302 (1997). https://doi.org/10.1016/S0920-5861(96)00153-8
  22. Hwang, I. C., Xin, M., Woo, S. I., "UHV-TPD study of NO Adsorption/Reaction over Cu/ZSM-5," Appl. Surf. Sci., 121-122, 310-313 (1997). https://doi.org/10.1016/S0169-4332(97)00312-7
  23. Ciuparu, D., Bensalem, A., Pfefferle, L., "Pd-Ce Interactions and Adsorption Properties of Palladium: CO and NO TPD Studies over Pd-Ce/$Al_{2}O_{3}$ Catalysts," Appl. Catal. B: Environ., 26, 241-255 (2000). https://doi.org/10.1016/S0926-3373(00)00130-2
  24. Dropsch, H., and Baerns, M., "Interaction of Methane with Supported Pd Catalysts Studied by Adsorption Microcalorimetry and TPD/TPSR Techniques," Appl. Catal. A: Gen., 65, 159-169 (1997).
  25. Hussain, G., and Rahman, M. M., "An Infrared Study of Co-Adsorption of $N_{2}O$ and CO on ZnO," Spectrochimica Acta Part A, 64, 880-885 (2006). https://doi.org/10.1016/j.saa.2005.08.016
  26. Hong, W.-J., Iwamoto, S., and Inoue, M., "Direct NO De-composition over a Ce-Mn Mixed Oxide Modified with Alkali and Alkaline Earth Species and $CO_{2}$-TPD Behavior of the Catalysts," Catal. Today, 164, 489-494 (2011). https://doi.org/10.1016/j.cattod.2010.10.063
  27. Centi, G., Perathoner, S., and Rak, Z. S., "Reduction of Green-house Gas Emissions by Catalytic Processes," Appl. Catal. B: Environ., 41, 143-155 (2003). https://doi.org/10.1016/S0926-3373(02)00207-2
  28. Chang, K. S., and Peng, X., "NO Presence Effects on the Reduction of $N_{2}O$ by CO over Al-Pd-Co Oxide Catalyst," J. Ind. Eng. Chem., 16, 455-460 (2010). https://doi.org/10.1016/j.jiec.2010.01.046
  29. Dandl, H., and Emig, G., "Mechanistic Approach for the Kinetics of the Decomposition of Nitrous Oxide over Calcined Hydrotalcites," Appl. Catal. A: Gen., 168, 261-268 (1998). https://doi.org/10.1016/S0926-860X(97)00357-8
  30. Debbagh Bouttarbouch, M. N., Garcia Cortes, J. M., Soussi El Begrani, M., Salinas Martinez de Lecea, C., and Perez-Ramirez, J., "Catalytic Conversion of $N_{2}O$ over FeZSM-5 Zeolite in the Presence of CO and NO," Appl. Catal. B: Environ., 54, 115-123 (2004). https://doi.org/10.1016/j.apcatb.2004.06.013