• Title/Summary/Keyword: N,O-ligand

Search Result 217, Processing Time 0.024 seconds

Butadiene Polymerization Catalyzed by Tri(aryloxo)aluminum Adduct of Cobalt Acetate

  • Park, Ji Hae;Kim, Ahreum;Jun, Sung Hae;Kwag, Gwanghoon;Park, Ka Hyun;Lee, Junseong;Lee, Bun Yeoul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4028-4034
    • /
    • 2012
  • Tris(2-phenylphenoxo)aluminum ($(2-PhC_6H_4O)_3Al$) exists as a dimeric form in toluene. When toluene-insoluble anhydrous cobalt acetate is treated with tris(2-phenylphenoxo)aluminum in toluene, the toluene-soluble adduct $(2-PhC_6H_4O)_3Al{\cdot}Co(OAc)_2$ is formed. The 2-phenylphenoxo ligand in the adduct can be replaced with another aryloxo ligand to give (aryloxo)$(2-PhC_6H_4O)_2Al{\cdot}Co(OAc)_2$ (aryloxo = 2-methylphenoxo, 2-isopropylphenoxo, 4-methylphenoxo, 4-isopropylphenoxo, or 4-tert-butylphenoxo). These complexes are active for butadiene polymerization without gel formation when activated with an equivalent amount of $(2-PhC_6H_4O)AlEt_2$ for 2 h. The highest activity, 175 kg/mol-Co (turnover number, 3200) was achieved with $(2-PhC_6H_4O)_3Al{\cdot}Co(OAc)_2$ at $65^{\circ}C$ for 2 h. The microstructure of the polymer chains is mostly trans-1,4-configuration (70-75%) with the remaining being 1,2-vinyl. The cis-1,4-configuration observed by IR is minimal (1-5%). By replacing the 2-phenylpheoxo with a 4-alkylphenoxo ligand, the amount of 1,4-configuration slightly increases, resulting in increase in the endothermic melting signal at $-30{\sim}50^{\circ}C$ in the DSC curve. The molecular weights of the polymers are high ($M_n$: 300000~800000) with a fairly narrow molecular weight distribution ($M_w/M_n$, 2.0-2.7).

Photoemission and Excitation Spectroscopy of cis-Difluoro(1,4,8,11-Tetraazacyclotetradecane) Chromium (III) Perchlorate

  • Park, Jong-Ha;Hong, Yong-Pyo;Park, Yu-Chul;Ryoo, Keon-Sang
    • Journal of Photoscience
    • /
    • v.7 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • The photoemission and excitation spectra of cis-[Cr(cyclam)F$_2$]ClO$_4$ (cyclam = 1,4,8,11-tetraazacy-clotetradecane) taken at 77 K are reported. The 298 K mid- and far-infrared spectra are also measured. The vibrational intervals of the electronic ground state are extracted from the far-infrared and emission spectra. The ten electronic bands due to spin-allowed and spin-forbidden transitions are assigned. The zero-phonon line In the excitation spectrum splits into two components by 169 cm$^{1}$, and the large $^2$E$_{g}$ splitting can be reproduced by the ligand field theory. According to the ligand field analysis, we can confirm that nitrogen atoms of the cyclam ligand have a strong c-donor character, and fluoride ligand also has strong $\sigma$- and $\pi$-donor properties toward chromium(III) ion.n.

  • PDF

Stability Studies of Divalent and Trivalent Metal Complexes with 1,7,13-Trioxa-4,10,16-triazacyclooctadecane-N,$N^{\prime},N^{\prime}^{\prime}$-tri(methylacetic acid)

  • 홍춘표;김동원;최기영
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1158-1161
    • /
    • 1997
  • The potentiometric methods have been used to determined the protonation constants (logKiH) for the synthesized 1,7,13-trioxa-4,10,16-triazacyclooctadecane-N,N',N''-tri(methylacetic acid) [N3O3-tri(methylacetic acid)] and the stability constants (logKML) of the complexes of divalent and trivalent metal ions with the ligand N3O3-tri(methylacetic acid). The protonation constants of N3O3-tri(methylacetic acid) were 9.70 for logK1H, 9.18 for logK2H, 7.27 for logK3H, 3.38 for logK4H, and 2.94 for logK5H. The stability constants for the complexes of divalent metal ions with N3O3-tri(methylacetic acid) were 10.39 for Co2+, 10.68 for Ni2+, 13.45 for Cu2+, and 13.00 for Zn2+. The order of the stability constants for the complexes of the divalent metal ions with N3O3-tri(methylacetic acid) was Co2+ < Ni2+ < Zn2+ < Cu2+. The stability constants for the complexes of trivalent metal ions with N3O3-tri(methylacetic acid) were 16.20 for Ce3+, 16.40 for Eu3+, 16.27 for Gd3+, and 15.80 for Yb3+. The results obtained in this study were compared to those obtained for similar ligands, 1,7-dioxa-4,10,13-triazacyclopentadecane-N,N',N"-tri(methylacetic acid) and 1,7,13-trioxa-4,10,16-triazacyclooctadecane-N,N',N"-triacetic acid, which have been previously reported.

Synthesis and Characterization of Mononuclear Octahedral Fe(III) Complex Containing a Biomimetic Tripodal Ligand, N-(Benzimidazol-2-ylmethyl)iminodiacetic Acid

  • Moon, Do-Hyun;Kim, Jung-hyun;Lah, Myoung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1597-1600
    • /
    • 2006
  • The mononuclear iron complex 1, $Fe^{III}$(Hbida)Cl($H_2O$), was synthesized using a tripodal tetradentate ligand, N-(benzimidazol-2-ylmethyl)iminodiacetic acid (H3bida), which has two carboxylate groups, one benzimida- zoyl group, and one tertiary amine where it serves as a tetradentate chelating ligand for the octahedral Fe(III) ion. The four equatorial positions of the octahedral complex are occupied by two monodentate carboxylates, a benzimidazole nitrogen, and an oxygen of a water molecule. One of the axial positions is occupied by an apical nitrogen of the Hbida and the other by a chloride anion. The mononuclear octahedral complex 1 mimics the geometry of the key intermediate structure of the catalytic reaction cycle proposed for the FeSODs, which is a distorted octahedral geometry with three histidyl imidazoles, an aspartyl carboxylate, a superoxide anion, and a water molecule. The redox potential of complex 1, $E_{1/2}$ is -0.11V vs. Ag/AgCl (0.12 V vs. NHE), which is slightly lower than those reported for the most FeSODs. The magnetic susceptibility of complex 1 at room temperature is 5.83 $\mu$B which is close to that of the spin only value, 5.92 $\mu$B of high-spin d5 Fe(III).

Synthesis, Characterization and in vitro Antibacterial Studies on Mixed Ligand Complexes of Iron(III) Based on 1,10-phenanthroline

  • Tigineh, Getinet Tamiru;Sitotaw, Getu;Workie, Amogne;Abebe, Atakilt
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.203-208
    • /
    • 2021
  • As part of our attempt to discover novel active compounds against multi-drug resistant pathogens, we hereby report two new complexes of iron(III) with formulae: [Fe(L1)2(H2O)2]Cl3 and [Fe(L1)2(L2)(H2O)]Cl2 where L1 = 1,10-phenanthroline (C12H8N2) and L2 = guanide (C5H4N5O-). The synthesized complexes were characterized using spectroscopic analysis (ESI-MS, ICP-OES, FT-IR, and UV-Vis), cyclic voltammetry, CHN analysis, gravimetric chloride determination, melting point determination, and conductance measurement. Octahedral geometries are assigned to both complexes. In vitro antibacterial activity was tested on two Gram-positive (Staphylococcus aureus, Streptococcus epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria using the disc diffusion method. The complexes demonstrated appreciable activity against these pathogens. Interestingly, the [Fe(L1)2(L2)(H2O)]Cl2 complex manifested a higher degree of inhibition against the drug-resistant Gram-negative bacteria than the commercially available drug, namely erythromycin.

Electronic Transitions and Ligand Field Analysis of mer-[N-(2-aminoethyl)-1,2-ethanediamine](glycylglycinato) chromium (III) Perchlorate (mer-[Cr(dien)(glygly)]$CIO_4$ 의 전자전이와 리간드장 해석)

  • Choi, Jong Ha;Hong, Yong Pyo;Park, Yu Chul
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.436-441
    • /
    • 2001
  • The emission and excitation spectra of mer-[Cr(dien)(glygly)]ClO$_4$(glygly=glycylglycinate;dien=N-(2-aminoethyl)-1,2-ethanediamine) taken at 77 K are reported. The infrared and visible spectra at 298 K are also measured. The twelve electronic bands due to spin-allowed and spin-forbidden transitions are assigned. Using the observed transitions, a ligand field analysis has been performed to determine the bonding property of coordinated atoms in the chromium(III) complex. It is confirmed that the amine nitrogen atoms of the dien and glygly have strong $\sigma$-donor characters, but the peptide nitrogen of glygly has weak $\pi$-donor property toward chromium(III) ion.

  • PDF

Oxovanadium(IV) Complexes Containing VO(ONS) Basic Core: Synthesis, Structure, and Spectroscopic Properties

  • Jang, Yoon-Jung;Lee, Uk;Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.72-76
    • /
    • 2005
  • Some mononuclear oxovanadium(IV) complexes having the general formula [VOL(bidentate)] (1-4) of which L is tridentate ONS-donor salicylaldehyde S-methyldithiocarbazate (sal-mdtc$^{2-}$) or salicylaldehyde 4- phenylthiosemicarbazate (sal-phtsc$^{2-}$) and bidentate stands for 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized. The complexes were characterized by elemental analyses, FAB mass, UV, IR spectroscopy, and cyclic voltammetry. Two of the complexes [VO(sal-mdtc)(bpy)] (1) and [VO(sal-mdtc) (phen)] (2) were crystallographically characterized. The structures revealed that vanadium atom is octahedrally coordinated by the O, N, and S donor atoms of the tridentate ligand, the two N atoms of bidentate ligand, and the oxo atom. The oxygen donor, occupying an apical position has a trans-labilizing effect, resulting in elongation of the V-N bond. The cyclic voltammograms of the complexes exhibited one cathodic response in the range −d1.45 $\sim$ −f1.52 V due to the reduction of V(IV) to V(III).

Synthesis, Characterization, and Crystal Structures of Iron(Ⅱ) and Manganese(II) Complexes with 4,7-bis(2-pyridylmethyl)-1-thia-4,7-diazacyclononane

  • Delong Zhang;Daryle H. Busch;Nathaniel W. Alcock
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.897-906
    • /
    • 1998
  • A new synthesis has been developed for 1-thia-4,7-diazacyclononane and the complexation behavior of a particular derivative has been explored. The pentadentate ligand 4,7-bis(2-pyridylmethyl)-l-thia-4,7-diazacyclononane ([9]$N_2SPY_2$) and its iron(Ⅱ) and manganese(Ⅱ) complexes were prepared and characterized. Magnetic moments of 5.17 and 5.90 μB respectively, indicate that the iron(Ⅱ) and manganese(Ⅱ) complexes are high spin. Charge transfer transitions (d-π*) occur for [Fe(Ⅱ)([9]$N_2SPY_2)(X)]^{n+}$at 27027, 25000, and 24390 cm-1 for X=$H_2O$, Cl-, and OH-, respectively. In acetonitrile solution, the cyclic voltammogram of the manganese(Ⅱ) complex exhibits a redox couple at 0.92 V vs. NHE while the redox potentials for [Fe(Il)([9]$N_2SPY_2)(X)]^{n+}$ are 0.70, 0.66, and 0.37 V vs. NHE for X=$H_2O$, Cl-, and OH-, respectively. The d-π* charge transfer energy and Fe(Ⅱ)/Fe(Ⅲ) redox potential for [Fe(Ⅱ)([9]$N_2SPY_2)(X)]^{n+}$ increase in the same order: $H_2O>Cl^- >OH^-$. The crystal structures of the iron(Ⅱ) and manganese(Ⅱ) complexes reveal that the metal ions are sixcoordinate, binding to four nitrogen atoms and a sulfur atom from the pentadentate ligand, as well as a chloride anion, with the chloride and sulfur atoms in cis positions. The two metals have similar coordination geometries, which are closer to trigonal prismatic than octahedral. In both iron and manganese complexes, the M-N($sp_3$) trans to Cl- is 0.07 Å longer than the one cis to Cl- , and M-N($sp^2$) trans to S is 0.05 longer than the one cis to S atom.

Fluorometric Quantitative Analysis of Al(III) Ion Using 5-Methoxy-2-phenyliminomethylphenol

  • Kim, Sun-Deuk;Lee, Hye-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1026-1030
    • /
    • 2009
  • A novel Schiff base ligand (N, O system) 5-methoxy-2-phenyliminomethylphenol ($5-CH_3O-PMP$) was synthesized. Using the synthesized ligand as a fluorescent reagent, a fluorometric method was developed for the quantitative analysis of Al(III) ion. The quantitative analysis of Al(III) ion was performed by making the complex compound between Al(III) ion and $5-CH_3O-PMP$ in ethanol-water solution (85/15, v/v, pH 6.2). The excitation wavelength (${\lambda}em$) of the complex compound was 397 nm while the emmision wavelength (${\lambda}em$) was 498 nm. The quantitative analysis of Al(III) ion was carried out by estimating the fluorescence intensity. The various calibration curves were used for the quantitative analysis in the range of 0.27$\sim$27 ng/mL Al(III) ion concentrations. The detection limit was 0.027 ng/mL. Using the fluorometric method developed in this study, satisfying results were obtained from various samples such as tap water, hot spring water, river water, sea water and waste water, which contained considerable amounts of interfering ions.

Electronic Structure and Elemental Composition of the Lead Sulfide Colloidal Quantum Dots Depending on the Types of Ligand and Post-Treatment (리간드 종류와 후처리 공정에 따른 황화납 콜로이드 양자점 박막의 전자 구조 및 원소 조성 분석)

  • Kim, Tae Gun;Choi, Hyekyoung;Jeong, Sohee;Kim, Jeong Won
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.6
    • /
    • pp.402-409
    • /
    • 2016
  • Thin films of lead sulfide colloidal quantum dots (CQDs) of 2.8 nm in diameter are fabricated and their surfaces are passivated by 3-mercaptopropionic acid (MPA) ligand or hybrid type ($MPA+CdCl_2$) ligand, respectively. The changes in valence band electronic structure and atomic composition of each PbS CQD film upon post-treatment such as air, N2 annealing or UV/Ozone have been studied by photoelectron spectroscopy. The air annealing makes the CQD fermi level to move toward the valence band leading to "p-type doping" regardless of ligand type. The UV/Ozone post-treatment generates $Pb(OH)_2$, $PbSO_x$ and PbO on both CQD surfaces. But the amount of the PbO has been reduced in hybrid type ligand case, especially. That is probably because the extra Pb cations in (111) surface are additionally passivated by $Cl_2$ ligand, which limits the reaction between the Pb cation and ozone.