DOI QR코드

DOI QR Code

Butadiene Polymerization Catalyzed by Tri(aryloxo)aluminum Adduct of Cobalt Acetate

  • Park, Ji Hae (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Ahreum (Department of Molecular Science and Technology, Ajou University) ;
  • Jun, Sung Hae (Department of Molecular Science and Technology, Ajou University) ;
  • Kwag, Gwanghoon (R&BD Center, Korea Kumho Petrochemical Co., Ltd.) ;
  • Park, Ka Hyun (Department of Chemistry, Chonnam National University) ;
  • Lee, Junseong (Department of Chemistry, Chonnam National University) ;
  • Lee, Bun Yeoul (Department of Molecular Science and Technology, Ajou University)
  • Received : 2012.08.09
  • Accepted : 2012.09.12
  • Published : 2012.12.20

Abstract

Tris(2-phenylphenoxo)aluminum ($(2-PhC_6H_4O)_3Al$) exists as a dimeric form in toluene. When toluene-insoluble anhydrous cobalt acetate is treated with tris(2-phenylphenoxo)aluminum in toluene, the toluene-soluble adduct $(2-PhC_6H_4O)_3Al{\cdot}Co(OAc)_2$ is formed. The 2-phenylphenoxo ligand in the adduct can be replaced with another aryloxo ligand to give (aryloxo)$(2-PhC_6H_4O)_2Al{\cdot}Co(OAc)_2$ (aryloxo = 2-methylphenoxo, 2-isopropylphenoxo, 4-methylphenoxo, 4-isopropylphenoxo, or 4-tert-butylphenoxo). These complexes are active for butadiene polymerization without gel formation when activated with an equivalent amount of $(2-PhC_6H_4O)AlEt_2$ for 2 h. The highest activity, 175 kg/mol-Co (turnover number, 3200) was achieved with $(2-PhC_6H_4O)_3Al{\cdot}Co(OAc)_2$ at $65^{\circ}C$ for 2 h. The microstructure of the polymer chains is mostly trans-1,4-configuration (70-75%) with the remaining being 1,2-vinyl. The cis-1,4-configuration observed by IR is minimal (1-5%). By replacing the 2-phenylpheoxo with a 4-alkylphenoxo ligand, the amount of 1,4-configuration slightly increases, resulting in increase in the endothermic melting signal at $-30{\sim}50^{\circ}C$ in the DSC curve. The molecular weights of the polymers are high ($M_n$: 300000~800000) with a fairly narrow molecular weight distribution ($M_w/M_n$, 2.0-2.7).

Keywords

References

  1. Singh, A.; Modi, S.; Subrahmanyam, N.; Munshi, P.; Upadhyay, V. K.; Jasra, R. V.; Maiti, M. Ind. Eng. Chem. Res. 2010, 49, 9648. https://doi.org/10.1021/ie101324d
  2. Kwag, G. Macromol. Res. 2010, 18, 535.
  3. Thiele, S. K. H.; Wilson, D. R. J. Macromol. Sci. Polym. Rev. 2003, 43, 581. https://doi.org/10.1081/MC-120025979
  4. Castner, K. F. USP6617406B2, 2003.
  5. Ding, L.; Halasa, A. F.; Lin, G.; Mark, J. E. Polym. Prep. 2010, 51, 462.
  6. Ricci, G.; Sommazzi, A.; Masi, F.; Ricci, M.; Boglia, A.; Leone, G. Coord. Chem. Rev. 2010, 254, 661. https://doi.org/10.1016/j.ccr.2009.09.023
  7. Cariou, R.; Chirinos, J.; Gibson, V. C.; Jacobsen, G.; Tomov, A. K.; Elsegood, M. R. J. Macromolecules 2009, 42, 1443. https://doi.org/10.1021/ma802633q
  8. Gong, D.; Wang, B.; Cai, H.; Zhang, X.; Jiang, L. J. Organom. Chem. 2011, 696, 1584. https://doi.org/10.1016/j.jorganchem.2011.01.015
  9. Jie, S.; Ai, P.; Li, B. G. Dalton Trans. 2011, 40, 10975. https://doi.org/10.1039/c1dt11073j
  10. Ricci, G.; Forni, A.; Boglia, A.; Motta, T. J. Mol. Catal. A: Chem. 2005, 226, 235. https://doi.org/10.1016/j.molcata.2004.10.022
  11. Korthals, B.; Berkefeid, A.; Ahlmann, M.; Mecking, S. Macromolecules 2008, 41, 8332. https://doi.org/10.1021/ma8016579
  12. Paolucci, G.; Zanella, A.; Bortoluzzi, M.; Sostero, S.; Longo, P.; Napoli, M. J. Mol. Catal. A: Chem. 2007, 272, 258. https://doi.org/10.1016/j.molcata.2007.03.017
  13. Wang, D.; Li, S.; Liu, X.; Gao, W.; Cui, D. Organometallics 2008, 27, 6531. https://doi.org/10.1021/om800660j
  14. Gong, D.; Jia, X.; Wang, B.; Wang, F.; Zhang, C.; Zhang, X.; Jiang, L.; Dong, W. Inorg. Chim. Acta 2011, 373, 47. https://doi.org/10.1016/j.ica.2011.03.047
  15. Nakayama, Y.; Sogo, K.; Cai, Z.; Yasuda, H.; Shiono, T. Polym. Int. 2011, 60, 692. https://doi.org/10.1002/pi.3008
  16. Nath, D. C. D.; Shiono, T.; Ikeda, T. Macromol. Chem. Phys. 2002, 203, 756. https://doi.org/10.1002/1521-3935(20020301)203:4<756::AID-MACP756>3.0.CO;2-K
  17. Zhang, L.; Nishiura, M.; Yuki, M.; Luo, Y.; Hou, Z. Angew. Chem. Int. Ed. 2008, 47, 2642. https://doi.org/10.1002/anie.200705120
  18. Zhang, L.; Suzuki, T.; Luo, Y.; Nishiura, M.; Hou, Z. Angew. Chem. Int. Ed. 2007, 46, 1909. https://doi.org/10.1002/anie.200604348
  19. Liu, D.; Cui, D. Dalton Trans. 2011, 40, 7755. https://doi.org/10.1039/c1dt10100e
  20. Racanelli, P.; Porri, L. Eur. Polym. J. 1970, 6, 751. https://doi.org/10.1016/0014-3057(70)90025-X
  21. Ashitaka, H.; Ishikawa, H.; Ueno, H.; Nagasaka, A. J. Polym. Sci. Part A-1, Polym. Chem. 1983, 21, 1853. https://doi.org/10.1002/pol.1983.170210625
  22. Castner, K. F. USP 5089574, 1992. https://doi.org/10.1002/pol.1983.170210625
  23. Castner, K. F. USP 5834573, 1998.
  24. Bonnemann, H.; Brijoux, W.; Brinkmann, R.; Meurers, W.; Mynott, R.; Von Philipsborn, W.; Egolf, T. J. Organom. Chem. 1984, 272, 231. https://doi.org/10.1016/0022-328X(84)80468-4
  25. Gippin, M. Ind. Eng. Chem. Prod. Res. Develop. 1965, 4, 160. https://doi.org/10.1021/i360015a004
  26. Bigmore, H. R.; Dubberley, S. R.; Kranenburg, M.; Lawrence, S. C.; Sealey, A. J.; Selby, J. D.; Zuideveld, M. A.; Cowley, A. R.; Mountford, P. Chem. Commun. 2006, 436. https://doi.org/10.1021/i360015a004
  27. Healy, M. D.; Ziller, J. W.; Barron, A. R. J. Am. Chem. Soc. 1990, 112, 2949. https://doi.org/10.1021/ja00164a017
  28. Garg, G.; Dubey, R. K.; Singh, A.; Mehrotra, R. C. Polyhedron 1991, 10, 1733. https://doi.org/10.1016/S0277-5387(00)83793-6
  29. Power, M. B.; Nash, J. R.; Healy, M. D.; Barron, A. R. Organometallics 1992, 11, 1830. https://doi.org/10.1021/om00041a017

Cited by

  1. 1,3-butadiene polymerization using Co/Nd-based Ziegler/Natta catalyst: Microstructures and properties of butadiene rubber vol.55, pp.1, 2014, https://doi.org/10.1002/pen.23864
  2. The influence of Ni/Nd-based Ziegler-Natta catalyst on microstructure configurations and properties of butadiene rubber vol.132, pp.15, 2015, https://doi.org/10.1002/app.41834