• Title/Summary/Keyword: Mycorrhizal

Search Result 250, Processing Time 0.025 seconds

Growth Characteristics of Rhizophagus clarus Strains and Their Effects on the Growth of Host Plants

  • Lee, Eun-Hwa;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.444-449
    • /
    • 2015
  • Arbuscular mycorrhizal fungi (AMF) are ubiquitous in the rhizosphere and form symbiotic relationships with most terrestrial plant roots. In this study, four strains of Rhizophagus clarus were cultured and variations in their growth characteristics owing to functional diversity and resultant effects on host plant were investigated. Growth characteristics of the studied R. clarus strains varied significantly, suggesting that AMF retain high genetic variability at the intraspecies level despite asexual lineage. Furthermore, host plant growth response to the R. clarus strains showed that genetic variability in AMF could cause significant differences in the growth of the host plant, which prefers particular genetic types of fungal strains. These results suggest that the intraspecific genetic diversity of AMF could be result of similar selective pressure and may be expressed at a functional level.

Acaulospora jejuensis, a New Species in Glomeromycota from Korea

  • Park, Hyeok;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.425-431
    • /
    • 2021
  • New species of arbuscular mycorrhizal fungi (Glomeromycota), Acaulospora jejuensis, was isolated from rhizosphere soils of Miscanthus sinensis in the grassland in Jeju Island of Korea. The species was identified using the morphological characteristics of the spores and the molecular phylogenetic analysis using partial DNA sequences from small subunit rDNA (SSU), internal transcribed spacer (ITS), and large subunit rDNA (LSU). Phylogenetic analysis placed the fungal species in a distinct clade within genus Acaulospora. Also, the species exhibited the morphological characteristics distinct from the other members of the genus. Therefore, Acaulospora jejuensis was described as a novel species from Korea.

Influence of Ectomycorrhizal Colonization on Cesium Uptake by Pinus densiflora Seedlings

  • Ogo, Sumika;Yamanaka, Takashi;Akama, Keiko;Nagakura, Junko;Yamaji, Keiko
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.388-395
    • /
    • 2018
  • Radionuclides were deposited at forest areas in eastern parts of Japan following the Fukushima Daiichi Nuclear Power Plant incident in March 2011. Ectomycorrhizal (EM) fungi have important effects on radiocaesium dynamics in forest ecosystems. We examined the effect of colonization by the EM fungus Astraeus hygrometricus on the uptake of cesium (Cs) and potassium (K) by Pinus densiflora seedlings. Pine seedlings exhibited enhanced growth after the EM formation due to the colonization by A. hygrometricus. Additionally, the shoot Cs concentration increased after the EM formation when Cs was not added to the medium. This suggests that A. hygrometricus might be able to solubilize Cs fixed to soil particles. Moreover, the shoot K concentration increased significantly after the EM formation when Cs was added. However, there were no significant differences in the root K concentration between EM and non-EM seedlings. These results suggest that different mechanisms control the transfer of Cs and K from the root to the shoot of pine seedlings.

Mycorrhization of Quercus spp. with Tuber huidongense and T. himalayense Collected in Korea

  • Gwon, Ju-Hui;Park, Hyeok;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.50 no.2
    • /
    • pp.104-109
    • /
    • 2022
  • Fungi of the genus Tuber are ectomycorrhizal fungi that form a symbiotic relationship mainly with oak and hazel trees. Tuber spp. exhibit a highly selective host plant preference; thus, for cultivation purposes it is important to select an appropriate host plant for successful mycorrhization. In addition, as mycorrhizal characteristics differ according to Tuber spp., it is necessary to understand the differences in mycorrhizae according to the fungal species. Tuber huidongense and Tuber himalayense were recently discovered in Korea; therefore, we used spore suspensions from these two species to inoculate two species of oak trees, Quercus acutissima and Quercus dentata, to compare colonization rates and morphologies of the mycorrhizae. The colonization rates demonstrated that the different Tuber spp. favored different host plant species. In addition, unique morphological and anatomical characteristics were observed for T. huidongense and T. himalayense depending on the host species. These findings can lead to new economically important agricultural activities related to truffle cultivation in Korea.

Studies on the Indigenous Vesicular-Arbuscular Mycorrhizal Fungi(VAMF) in Horticultural Crops Grown Under Greenhouse -I. Spore Density and Root Colonization of the Indigenous VAMF in Soil of Some Horticultural Crops (시설원예(施設園藝) 작물(作物)에서 토착(土着) VA균근균(菌根菌)에 관한 연구(硏究) -I. 감염양상(感染樣相)과 밀도(密度))

  • Sohn, Bo-Kyoon;Huh, Sang-Man;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.3
    • /
    • pp.225-233
    • /
    • 1991
  • This study was conducted to evaluate the potential of indigenous vesicular-arbuscular mycorrhizal fungi(VAMF) in the rhizosphere soil of horticultural crops grown under greenhouse and open-field condition, in the southern area of Kores. Soil samples collected from the rhizosphere of some sellected horticultural crops, such as cucumber, hot pepper, lettuca, tomato and eggplant grown under greenhouse or open-field condition. All tested crops are considered as mycorrhizal plants. The infection rate of horticultural crops investigated ranged from 38% to 70%, hot pepper and eggplant grown under greenhouse condition showed the highest infection being 66.0% and 70.0%, respectively. Spore densities were from 4.8 to 20.0g-1 on dried soil basis. Spore densities of VAMF in the rhizosphere soils under greenhouse condition were higher than that of open-field conditions. The highest distribution of spores in diameter ranged from $75{\mu}m$ to $106{\mu}m$ in the rhizosphere soil of lettuce, cucumber and tomato while those in hot pepper and eggplant ranged from $75{\mu}m$ to $250{\mu}m$. Glomus sp.-type spores predominated in the slightly acid soil(pH 6.3), while Acaulospora sp.-type spores greatly predominated in the very strongly acid field(pH 4.9).

  • PDF

Improvement of Arbuscular Mycorrhizal Fungi(AMF) Propagule at the Preplanting Field for Ginseng Cultivation (인삼 재배 예정지의 Arbuscular 균근균(AMF) 번식체 밀도 향상)

  • Sohn, Bo-Kyoon;Jin, Seo-Young;Kim, Hong-Lim;Cho, Ju-Sik;Lee, Do-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.170-176
    • /
    • 2008
  • This study was carried out to improve density of arbuscular mycorrhizal fungi (AMF) propagule and physiochemical properties of soil by planting crops at the preplanning field for ginseng cultivation. Winter crops, such as barley and rye and summer crops, such as sudangrass and soybean were cultivated in combination to improve AMF propagation and soil aggregation at the fields. Yield of harvested crops by plating with winter or/and summer crops was $3,045kg\;10a^{-1}$ of the only rye cultivation, $2,757kg\;10a^{-1}$ of sudangrass cultivation in combination with rye growing (rye/sudangrass) and $1,628kg\;10a^{-1}$ of soybean cultivation in combination with barley growing (barley/soybean), respectively. Soil aggregation rate was improved by cultivation with barley (45.7%) and with rye/sudangrass (45.1%), respectively. The density of AMF spores in soil was increased slowly by cultivating with winter crops. In summer crops cultivation system, density of AMF spores at sudangrass cultivated field was $64.0spores\;g^{-1}$ dried soil and it was higher than that at soybean cultivated field. External hyphae length (EHL) was $1.5{\sim}2.0m\;g^{-1}$ air-dried soil at winter crops cultivated field. However, in summer crops cultivation systems, EHL was $2.6{\sim}2.9m\;g^{-1}$ airdried soil at sudangrass cultivated field and was $1.7{\sim}2.2m\;g^{-1}$ air-dried soil at soybean cultivated filed, showing these were higher than those in non-cultivated field (control). Glomalin content of soil cultivated with crops was higher than that of control soil. Especially, the highest glomalin content was shown to $1.7m\;g^{-1}$ air-dried soil in the barley/soybean cultivation systems. These results suggested that the most effective soil management to improve AMF propagule density and soil physical properties by planting crops system was cultivating sudangrass followed by barley at the preplanning fields for ginseng cultivation.

Analysis of Environmental Characteristics in Habitat of Amanita hemibapha (달걀버섯 발생지의 환경특성 분석)

  • Sou, Hong-Duck;Hur, Tae-Chul;Jung, Sung-Cheol;Joo, Sung-Hyun;Park, Hyun
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.164-170
    • /
    • 2011
  • Amanita hemibapha is a kind of mycorrhizal mushroom which has a relation with host plants and environmental factors. For the purpose of studying the relationship between environmental factors and mushrooms, in this study we conducted to investigate the soil physicochemical properties, the distribution of plants and the diversity of mushrooms in Gwangyang, Chungdo and Daegu. Soil texture in habitate of Amanita hemibapha was Sandy Loam and Sandy Clay Loam which contains a high rate of sand. Soil pH was approximately 5.0 in all study sites. Total nitrogen contents, C/N ratio and available phosphate($P_2O_5$) were the highest at the Chungdo. However, Gwangyang and Chungdo represent similar Cation Exchange Capacity(C.E.C) and Daegu has much less than other areas. Exchangeable cations, $Ca^{2+}$ content was higher at Gwangyang and Chungdo than Daegu and $Na^+$ content was the highest at Chungdo among three sites. Daegu has much $Mg^{2+}$ contents followed by Chungdo and Gwangyang. Interestingly, $K^+$ content listed in reverse order of $Mg^{2+}$ at Gwangyang, Chungdo and Daegu. The main woody plants in study sites are confirmed as Carpinus laxiflora, Quercus mongolica, Q. serrata and Pinus densiflora. Quercus species are found as a common species in three study sites. Lastly, 8 family and 12 species of mushrooms are emerged in Gwangyang, also 8 family and 12 species and 5 family and 10 species are found in Chungdo and Daegu, respectively. Amanita pantherina, Boletus edulis, Tylopilus felleus and Marasmius maximus, which found in study sites, are also kind of mycorrhizal mushroom same as A. hemibaph. By using correspondence analysis, Q. mongolica, Q. serrata, Q. variabilis and C. laxiflora are expected to as a host plant of A. hemibapha.

Effects of Arbuscular Mycorrhiza Inoculation and Phosphorus Application on Early Growth of Hot Pepper(Capsicum annum L.) (Arbuscular mycorrhiza의 접종방법 및 인산시용량이 고추(Capsicum annum L.)의 초기생장에 미치는 영향)

  • Park, Hyang-Mee;Kang, Hang-Won;Kang, Ui-Gum;Park, Kyeong-Bae;Lee, Sang-Sun;Song, Sung-Dahl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study was conducted to examine the effects of Arbuscular Mycorrhizae inoculation and phosphorus application on early growth of hot pepper. Gigaspora margarita and Acaulospora spinosa were chosen for this investigation and inoculated into soils of different P levels by varying inoculation time and density. After treatment, some relevant growth responses of hot pepper were measured. Regardless of soil P levels, hot peppers treated with arbuscular mycorrhizal fungi had 5~34% more fresh weight than those untreated, but the effect of inoculation time and density was not different between two species. With decreased P levels, the infection rate and dependency of hot peppers increased. The content of P and K of AMF-inoculated hot peppers increased with increasing P levels, but the shoot to root ratio of those elements decreased. The results of this study showed that inoculation of AMF would be effective in promoting growth of hot pepper seedlings and increase transplant adaptation due in part to the resulted higher root development.

  • PDF

Effect of the different cover crop incorporation on glomalin-related soil protein and soybean and maize growth

  • Higo, Masao;Gunji, Kento;Isobe, Katsunori
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.344-344
    • /
    • 2017
  • The glycoprotein known as glomalin-related soil protein (GRSP) is abundantly produced on the hyphae and spores of arbuscular mycorrhizal fungi (AMF) in soil and roots. GRSP play a decisive role in the soil aggregation, but GRSP was also sensitive to agricultural managements. Thus, our objectives were to assess the effect of different cover crop incorporation on the GRSP content in soil and growth of subsequent soybean and maize. Pot experiments with the incorporation of four cover crops were set up. The same amount (666g) of aboveground plant parts of wheat (AMF host), hairy vetch (AMF host), mustard (non-host) and rapeseed (non-host) was separately incorporated into soils. The aboveground plant parts and roots of soybean and maize were grown in each incorporated pots and sampled at 6 and 9 weeks after sowing. Our results showed that the different cover crops incorporation affected soil biological and chemical properties such as EC, $NO_3-N$ content, ${\beta}-glucosidase$ activity, alkaline phosphatase (ALP) activity and GRSP content. The soil EC and $NO_3-N$ content in the hairy vetch, mustard and rapeseed was higher compared to the wheat. The ${\beta}-glucosidase$ activity in the wheat and hairy vetch was significantly higher than that in the mustard and rapeseed, and the ALP activity in the wheat was significantly higher than that in the hairy vetch, mustard, and rapeseed. The GRSP content in the mustard and rapeseed was significantly lower than that of the hairy vetch and wheat. Moreover, The top dry weight and leaf area of soybean and maize in the hairy vetch at 6 weeks were significantly higher compared to the other treatments. Our results indicated that the incorporation of mustard and rapeseed may cause indirectly the decrease of GRSP content and soil enzyme activity in soil. One possible explanation for the decrease of GRSP in non-AMF host crop treatments may be the decrease of AMF density in the soil. AMF are not able to form a symbiotic relationship with Brassicaceae roots due to the release of anti-fungal compounds. This means the AMF may not be able to produce GRSP in the soil. However, the differences in the benefit of cover crop incorporation were shown only by a pot experiment. Comparative investigations of crop residue managements would be applied to both pot experiment and field study to clarify a better selection of cover crops in rotation to encourage GRSP production.

  • PDF

Effects of Light and Inoculation of Frankia and Alpova diplophloeus on the Tripartite Symbioses Development in Alnus rubra Bong. Seedlings (광도(光度)와 Frankia 질소고정균(窒素固定菌) 및 Alpova diplophloeus 외생균근균(外生菌根菌)의 접종(接種)이 루브라 오리나무 묘목내(苗木內) 삼자공생관계(三者共生關係) 발달(發達)에 미치는 영향(影響))

  • Koo, Chang-Duck;Molina, Randy;Miller, Steven
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.3
    • /
    • pp.306-318
    • /
    • 1995
  • To investigate the effect of low light intensities and the inoculation of Frankia and/or Alpova diplophloeus on the symbioses development and their host growth, red alder(Alnus rubra Bong.) seedlings were grown in an air - filtered walk - in growth chamber with either $N_2$ - fixing Frankia inoculation or N - fertilization and live or dead spore inoculation of the ectomycorrhizal fungus A. diplophloeus(Zeller & Dodge) Trappe & Smith. When they were 20 weeks old, the seedlings were grown under three levels of light intensities of 680, 320 and $220{\mu}mol/m^2/s$ PPFD(photosynthetic photon flux density) for three weeks. PPFD of 220 significantly decreased the development of A. diplophloeus mycorrhizae and nodules, the rates of $N_2$ - fixation and $CO_2$ exchange, and the growth of tile seedlings. PPFD 320 significantly decreased the $CO_2$ exchange rate only. Frankia inoculation significantly increased mycorrhiza formation and seedling growth. Alpova inoculation significantly increased seedling growth but not nodule development and $N_2$ - fixation. None of the symbionts affected $CO_2$ exchange rates. Frankia was more critical for seedling growth and mycorrhizal development than the mycorrhizal fungus for seedling growth and nodule development.

  • PDF