• Title/Summary/Keyword: Myb2

Search Result 38, Processing Time 0.024 seconds

Modification of cell wall structural carbohydrate in the hybrid poplar expressing Medicago R2R3-MYB transcription factor MtMYB70

  • Kim, Sun Hee;Choi, Young Im;Jin, Hyunjung;Shin, Soo-Jeong;Park, Jong-Sug;Kwon, Mi
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.93-103
    • /
    • 2015
  • The isolation, cloning, and characterization of an R2R3-MYB transcription factor gene (MtMYB70) from the model legume Medicago truncatula is reported. MtMYB70 consists of a 768-bp coding sequence corresponding to 255 amino acids. Sequence alignment revealed that MtMYB70 cDNA contains conserved R2R3-type MYB domains with highly divergent C terminal regions. MtMYB70 was found to have relatively low sequence homology with known R2R3-MYB genes. Phylogenetic analysis placed the R2R3-MYB domain of MtMYB70 closest to PtMYB1, a known activator of lignin biosynthesis. Overexpression of MtMYB70 under the control of the 35S promoter in transgenic poplar did not cause a significant difference in total lignin content relative to the control, but glucan content was significantly increased in transgenic poplar. Therefore, MtMYB70 might have regulatory role in the biosynthesis of cell wall structural carbohydrates.

Functional Identification of a Nuclear Localization Signal of MYB2 Protein in Giardia lamblia

  • Kim, Juri;Shin, Mee Young;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.6
    • /
    • pp.675-679
    • /
    • 2020
  • MYB2 protein was identified as a transcription factor that showed encystation-induced expression in Giardia lamblia. Although nuclear import is essential for the functioning of a transcription factor, an evident nuclear localization signal (NLS) of G. lamblia MYB2 (GlMYB2) has not been defined. Based on putative GlMYB2 NLSs predicted by 2 programs, a series of plasmids expressing hemagglutinin (HA)-tagged GlMYB2 from the promoter of G. lamblia glutamate dehydrogenase were constructed and transfected into Giardia trophozoites. Immunofluorescence assays using anti-HA antibodies indicated that GlMYB2 amino acid sequence #507-#530 was required for the nuclear localization of GlMYB2, and this sequence was named as NLSGlMYB2. We further verified this finding by demonstrating the nuclear location of a protein obtained by the fusion of NLSGlMYB2 and G. lamblia glyceraldehyde 3-phosphate dehydrogenase, a non-nuclear protein. Our data on GlMYB2 will expand our understanding on NLSs functioning in G. lamblia.

Classification and Expression Profiling of Putative R2R3 MYB Genes in Rice

  • Kim, Bong-Gyu;Ko, Jae-Hyung;Min, Shin-Young;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • MYB genes, comprising group of related genes found in animal, plant, and fungal genomes, encode common DNA-binding domains composed of one to four repeat motifs. MYB genes containing two repeats (R2R3) constitute largest MYB gene family in plants. R2R3 MYB genes play important roles in regulation of secondary metabolism, control of cell shape, disease resistance, and hormone response. Eight-four R2R3 MYB genes were retrieved from rice genome for functional characterization of MYB genes. Analysis of MYB domains revealed each MYB domain contains three ${\alpha}$-helices with regularly spaced tryptophan residues. R2R3 MYB genes were divided into four subfamilies based on phylogenic analysis result. Real-time PCR analysis of 34 MYB genes revealed 12 MYB genes were highly expressed in seeds than in leaves, whereas 4 genes were highly expressed in leaves.

Development of transgenic potato with improved anthocyanin contents using sweet potato IbMYB1 gene (고구마의 IbMYB1 유전자를 이용한 안토시아닌 고함유 형질전환 감자의 개발)

  • Kim, Yun-Hee;Han, Eun-Hee;Kwak, Sang-Soo;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.364-368
    • /
    • 2018
  • The R2R3-type protein IbMYB1 transcription factor is a key regulator for anthocyanin biosynthesis in the storage roots of sweet potatoes. It was previously demonstrated that the IbMYB1 expression stimulates anthocyanin pigmentation in tobacco leaves, arabidopsis and storage roots of sweet potatoes. In this study, we generated the transgenic potato plants that express the IbMYB1 genes, which accumulated high levels of anthocyanins under the control of either the tuber-specific patatin (PAT) promoter or oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The PAT-MYB1 transgenic lines exhibited higher anthocyanin levels in the tuber than the empty vector control (EV) or SWPA2-MYB1 plants. When combined, our results indicated that overexpression of the IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced tissue specific anthocyanin production.

Determination of the MYB Motif Interacting with WD40 and Basic Helix Loop Helix Proteins

  • Kim, Ji-Hye;Kim, Bong-Gyu;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.67-70
    • /
    • 2012
  • Plant MYB transcription factors regulate secondary metabolism, cellular morphogenesis, and plant hormone signaling pathway. MYB proteins in plants consist of two repeats of 50 amino acid residues, which are referred to as R2R3 and they interact with WD40 or basic helix loop helix (bHLH) proteins. Yeast two hybrid assay was determined whether rice MYB protein interacts with either OsTTG1, which contains a WD40 domain, or with OsGL3, which contains a bHLH domain. Among 30 OsMYB proteins, three interacted with OsTTG1 and five interacted with OsGL3. A series of MYB mutants were created to determine the MYB domain important for the interaction with OsTTG1 or OsGL3. By using the yeast two hybrid assay, we found that the R3 motif of OsMYB10 and the R2 motif of OsMYB16 were required for interaction with OsTTG1 and OsGL3 proteins, respectively.

Growth, quality, and yield characteristics of transgenic potato (Solanum tuberosum L.) overexpressing StMyb1R-1 under water deficit

  • Im, Ju-Sung;Cho, Kwang-Soo;Cho, Ji-Hong;Park, Young-Eun;Cheun, Chung-Gi;Kim, Hyun-Jun;Cho, Hyun-Mook;Lee, Jong-Nam;Jin, Yong-Ik;Byun, Myung-Ok;Kim, Dool-Yi;Kim, Myeong-Jun
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.154-162
    • /
    • 2012
  • This study was conducted to evaluate agronomic characteristics such as growth, quality, and yields of StMyb1R-1 transgenic potato and also to obtain the basic data for establishing assessment guidelines of transgenic potato. Three transgenic lines (Myb 1, Myb 2, and Myb 8) were cultivated under conventional irrigation, drought condition, and severe drought condition and were analyzed by comparing with wild type, non-transgenic cv. Superior. Myb 2 showed a different flower color from wild type and Myb 1 had much bigger secondary leaflets than wild type. Myb 1 and Myb 2 showed higher $P_2O_5$ content in both top and root zone and longer shaped tubers than wild type. In yield factors, transgenic lines had more tubers than wild type, however their yield decreases were severe because of the poor enlargement of tuber under water deficit condition. This tendency was noticeable in Myb 1 and Myb 2. In TR ratio, chlorophyll content, dry matter rate, and relative water content, there were no big differences between transgenic lines and wild type. Meanwhile, in phenotype, growth, quality, and yield factors, substantial equivalent was confirmed between Myb 8 and wild type. Then, Myb 8 showed the highest marketable tuber yield under conventional irrigation, while showed lower level than wild type under water deficit. Judged by this result, the enhancing droughttolerance by StMyb1R-1 gene might actually not mean the enhancement of photosynthesis or starch accumulation in tuber and, furthermore, not the yield improvement. More detailed research will be required to accurately understand the relationship between StMyb1R-1 and yield factors.

AtMyb56 Regulates Anthocyanin Levels via the Modulation of AtGPT2 Expression in Response to Sucrose in Arabidopsis

  • Jeong, Chan Young;Kim, Jun Hyeok;Lee, Won Je;Jin, Joo Yeon;Kim, Jongyun;Hong, Suk-Whan;Lee, Hojoung
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.351-361
    • /
    • 2018
  • Sucrose is a crucial compound for the growth and development of plants, and the regulation of multiple genes depends on the amount of soluble sugars present. Sucrose acts as a signaling molecule that regulates a proton-sucrose symporter, with its sensor being the sucrose transporter. Flavonoid and anthocyanin biosynthesis are regulated by sucrose, and sucrose signaling can affect flavonoid and anthocyanin accumulation. In the present study, we found a Myb transcription factor affecting accumulation of anthocyanin. AtMyb56 showed an increase in its expression in response to sucrose treatment. Under normal conditions, anthocyanin accumulation was similar between Col-0 (wild type) and atmyb56 mutant seedlings; however, under sucrose treatment, the level of anthocyanin accumulation was lower in the atmyb56 mutant plants than in Col-0 plants. Preliminary microarray analysis led to the investigation of the expression of one candidate gene, AtGPT2, in the atmyb56 mutant. The phosphate translocator, which is a plastidial phosphate antiporter family, catalyzes the import of glucose-6-phosphate (G-6-P) into the chloroplast. AtGPT2 gene expression was altered in atmyb56 seedlings in a sucrose-dependent manner in response to circadian cycle. Furthermore, the lack of AtMyb56 resulted in altered accumulation of maltose in a sucrose-dependent manner. Therefore, the sucrose responsive AtMyb56 regulates AtGPT2 gene expression in a sucrose-dependent manner to modulate maltose and anthocyanin accumulations in response to the circadian cycle.

Enhanced Salt Stress Tolerance in Transgenic Potato Plants Expressing IbMYB1, a Sweet Potato Transcription Factor

  • Cheng, Yu-Jie;Kim, Myoung-Duck;Deng, Xi-Ping;Kwak, Sang-Soo;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1737-1746
    • /
    • 2013
  • IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

Effect of pH on the expression of RsMYB1 that regulates anthocyanin production in Petunia plants

  • Lee, Deuk Bum;Ai, Trinh Ngoc;Naing, Aung Htay;Kim, Chang Kil
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • We established an in vitro system to investigate transcription levels of the RsMYB1 gene expressed in T2 20-day-old transgenic Petunia plants (three independent lines: PhRs1, PhRs2, and PhRs3), and the association between those transcription levels and anthocyanin production at various pH values (3.0 to 8.0) for a period of 10 days. All the lines treated with pH 5.0-7.0 exhibited increased anthocyanin content and delays in growth compared to the wild-type (WT) seedlings. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis confirmed that the enhancement of anthocyanin production in the transgenic lines was due to the upregulation of RsMYB1 transcription at various pH values. The results suggest that pH value can control expression of RsMYB1 which is associated with anthocyanin production.