• Title/Summary/Keyword: Mutual torque

Search Result 28, Processing Time 0.026 seconds

Calculation of Self and Mutual Inductances in Multi-Phase Permanent Magnet Synchronous Motor (다상 영구자석 동기 전동기의 자기 및 상호 인덕턴스 계산)

  • Lee, Cheewoo
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A multi-phase electric machine has gained distinct interest due to its high reliability compared to a three-phase structure, and in this paper, self and mutual inductances in a five-phase permanent magnet synchronous machine (PMSM) are estimated by an analytical method. Recently, most of high-performance operations are implemented by field oriented control and/or direct torque control, and inductance for those controls is one of the key parameters in the voltage equation of phase windings. Winding function theory (WFT) is employed to calculate the inductance of phase windings, and it is verified that the result of the analytical method has a deviation of approximately 3 % compared to finite element analysis. Finally, in this paper, the way to obtain direct and quadrature inductance values are introduced from the analytical inductance calculated by WFT.

Transient Voltage Characteristic of Self-excited Induction Generator by State Equation (상태방정식에 의한 자기여자 유도발전기의 과도전압특성)

  • Kim, Do-Jin;Jwa, Chong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.882-884
    • /
    • 2002
  • The transient voltage characteristics of capacitor self-exited induction generator are analyzed by the state equation which is obtained from the d-q axis equivalent circuit of stationary reference frame and torque equation. The d-q equivalent circuit is composed using the condition of stationary reference frame. The mutual inductance is only considered as a function of magnetizing current in the equivalent circuit. The characteristics are analyzed and discussed by the backward Euler method for various load conditions under specified initial conditions and input.

  • PDF

Study on Calculation of Mutual and Self-inductance in SRM with Full-pitched winding (Full-pitched winding SRM에서의 상호(相互) 및 자기(自己) 인덕턴스의 산정에 관한 연구)

  • Baik, Seung-Kyu;Lee, Chi-Woo;Jung, Tae-Uk;Lee, Il-Chun;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.31-33
    • /
    • 1996
  • A SRM develops its torque according to the inductance variation as the rotor position and the phase current. The variation of the inductance and the phase current plays an important role in output characteristics. Predicting and calculating the inductance is invaluable in the study of SRM. This paper suggests the estimation method of inductance as variation of phase current and rotor position considering magnetic saturation of motor core. This method is also applied to full-pitched winding SRM.

  • PDF

PRIMORDIAL BLACKHOLE AS A SEED FOR THE COSMIC MAGNETIC FIELD

  • LA DAIL;PARK CHANGBOM
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.83-91
    • /
    • 1996
  • We present a model that rotating primordial blackholes(PBHs) produced at the end of inflation generate the random, non-oriented primordial magnetic field. PBHs are copiously produced as the Universe completes the cosmic phase transition via bubble nucleation and tunneling processes in the extended inflation hypothesis. The PBHs produced acquire angular momentum through the mutual tidal gravitational interaction. For PBHs of mass less than 1013g, one can show that the evaporation (photon) luminosity of PBHs exceeds the Eddington limit. Thus throughout the lifetime of the rotating PBH, radiation flow from the central blackhole along the Kerr-geodesic exerts torque to ambient plasma. In the process similar to the Bierman's battery mechanism electron current reaching up to the horizon scale is induced. For PBHs of Grand Unified Theories extended inflation with the symmetry breaking temperature of $T_{GUT}\;\~\;10^{10}$ GeV, which evaporate near decoupling, we find that they generate random, non-oriented magnetic fields of $\~10^{-11}G$ on the last-scattering surface on (the present comoving) scales of $\~O(10)Mpc$.

  • PDF

Maximum Power Control of IPMSM Considering Nonlinear Cross-Magnetization Effects

  • Kim, Youn-Hyun;Kim, Won-Kyu;Kim, Sol
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.940-947
    • /
    • 2012
  • Interior permanent magnet synchronous motor is widening its application compared to other AC machines because of magnetic and reluctance torque. Despite of the advantages, improving control performance with parameter nonlinearity consideration is crucial during the field weakening control. This paper shows a maximum power control method at the field weakening region that considers d, q inductance's nonlinearity due to magnetic saturation and d, q mutual inductance. To verify the feasibility of control scheme, FEM simulations and experiments about comparison between linear and nonlinear maximum power control are carried out.

Hybrid Tension/Mobile Control of working Robot for Installed Troy Cable (전동차 트로이선 가설 작업로봇의 장력/이동의 혼합제어)

  • Park, Jong-Il;Jung, Seoung-Hwan;Hong, Jung-Pyo;Hong, Soon-Ill
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.900-901
    • /
    • 2007
  • In this paper, an approach to designing controllers for dynamic hybrid Tension/Mobile control of a installed robot for a troy wire cable is presented. Mobile control system of robot is designed based on equation of dc motor and tension control system is designed based on equation of ac servomotor for generating torque and dynamic equation of a wire cable. Dynamic hybrid control system is proposed by feedforward controller with acceleration and tension at start of robot to the case where the tow task of robot dynamics is suppressed a mutual interference. The proposed system is simulated and experimented, results is verified the utilities.

  • PDF

3D Field Analysis And Circuit Parameter Calculation of Superconducting Homopolar Synchronous Motor (전초전도 호모폴라 모터의 3차원 자계해석 및 회로상수 추출)

  • Cho, Young-Han;Sung, Tan-Il;Kim, Young-Sun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.700_701
    • /
    • 2009
  • In comparison with conventional motors, Superconducting Homopolar Synchronous Motors (SHSMs) have advantages that it generates high magnetic field by superconducting winding. Therefore, superconducting coil used in SHSM can reduce the motor size and enhance the motor efficiency for high torque applications under the space constraints for propulsion system. During the design process of SHSM, it is required to evaluate the performance of initial design model, that is accurately analyzed using 3D magnetic field modeling large air-gap and flux distribution of axial direction is properly taken into account. In this paper, we analyze magnetic field of a homopolar motor with a 4-pole homopolar rotor and a stator of 3 phase windings. The field analysis is done using 3D finite element analysis which can reflect the end effect and overhang winding. And we extract mutual inductances between a rotor wind and the 3 stator windings. The extracted inductances are used for evaluation of overall motor performances that are calculated with generalized circuit theory of electrical machines.

  • PDF

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.