• Title/Summary/Keyword: Mutant screening

Search Result 134, Processing Time 0.023 seconds

Simultaneous enhancement of thermostability and catalytic activity of phospholipase $A_1$ by evolutionary molecular engineering

  • Song, Jae-Kwang;Rhee, Joon-Shick
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.168-171
    • /
    • 2000
  • The thermal stability and catalytic activity of phospholipase A$_1$ from Serratia sp. MK1 were improved by an evolutionary molecular engineering. Two thermostable mutants were isolated after sequential rounds of error-prone PCR to introduce random mutations and filter-based screening of the resultant mutant library, and identified as having six (mutant TA3) and seven (mutant TA13) amino acid substitutions, respectively. Different types of the substitutions were found in two mutants, resulting in the increase of nonploar residues (mutant TA3) or changes between side chains within polar or charged residues (mutant TA13). The wild-type and mutant enzymes were purified, and the effect of temperature on their stability and catalytic activity was investigated. The T$\sub$m/ values of TA3 and TA13 were increased by 7 and 11$^{\circ}C$, respectively. Thus, evolutionary molecular engineering was found to be an effective and efficient approach to increasing thermostability without compromising enzyme activity.

  • PDF

Biorational Screening System Using Cyanobacteria(Anacystis nidulans $R_2$) for Searching the Photosynthetic Electron Transport Inhibitors (Cyanobacteria를 이용한 광합성 전자전달저해제의 생합리적 스크리닝)

  • Hwang, I.T.;Hong, K.S.;Cho, K.Y.;Yoshida, S.
    • Korean Journal of Weed Science
    • /
    • v.13 no.2
    • /
    • pp.81-88
    • /
    • 1993
  • For searching the photosynthetic electron transport(PET) inhibitors, bio-rational screening system using thylakoid membranes extracted from wild and mutant cyanobacteria(Anacystis nidulans $R_2$) was developed. Generally, thylakoid membrane was more sensitive to the tested herbicides than the chloroplast from spinach in the Hill reaction. Higher resistant characteristics appeared in mutant D-5, Di-22 to diuron and mutant G-264 to atrazine as compared to wild type. To test the reaction of thylakoid membrane to herbicides, diuron and atrazine were applied simultaneously. Diuron and atrazine competed each other for binding with substituted amino acids, while diuron and dinoseb were non-competitive, and inhibiting activity was increased. Conclusively, bio-rational screening system using cyanobacteria was proved to be fast and efficient screening method for the development of PET inhibitors.

  • PDF

Generation and Evaluation of High ${\beta}$-Glucan Producing Mutant Strains of Sparassis crispa

  • Kim, Seung-Rak;Kang, Hyeon-Woo;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.41 no.3
    • /
    • pp.159-163
    • /
    • 2013
  • A chemical mutagenesis technique was employed for development of mutant strains of Sparassis crispa targeting the shortened cultivation time and the high ${\beta}$-glucan content. The homogenized mycelial fragments of S. crispa IUM4010 strain were treated with 0.2 vol% methyl methanesulfonate, an alkylating agent, yielding 199 mutant strains. Subsequent screening in terms of growth and ${\beta}$-glucan content yielded two mutant strains, B4 and S7. Both mutants exhibited a significant increase in ${\beta}$-glucan productivity by producing 0.254 and 0.236 mg soluble ${\beta}$-glucan/mg dry cell weight for the B4 and S7 strains, respectively, whereas the wild type strain produced 0.102 mg soluble ${\beta}$-glucan/mg dry cell weight. The results demonstrate the usefulness of chemical mutagenesis for generation of mutant mushroom strains.

Development of cell models for high-throughput screening system of Charcot-Marie-Tooth disease type 1

  • Choi, Yu-Ri;Jung, Sung-Chul;Shin, Jinhee;Yoo, So Young;Lee, Ji-Su;Joo, Jaesoon;Lee, Jinho;Hong, Young Bin;Choi, Byung-Ok
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2015
  • Purpose: Charcot-Marie-Tooth disease (CMT) is a peripheral neuropathy mainly divided into CMT type 1 (CMT1) and CMT2 according to the phenotype and genotype. Although molecular pathologies for each genetic causative have not been revealed in CMT2, the correlation between cell death and accumulation of misfolded proteins in the endoplasmic reticulum (ER) of Schwann cells is well documented in CMT1. Establishment of in vitro models of ER stress-mediated Schwann cell death might be useful in developing drug-screening systems for the treatment of CMT1. Materials and Methods: To develop high-throughput screening (HTS) systems for CMT1, we generated cell models using transient expression of mutant proteins and chemical induction. Results: Overexpression of wild type and mutant peripheral myelin protein 22 (PMP22) induced ER stress. Similar results were obtained from mutant myelin protein zero (MPZ) proteins. Protein localization revealed that expressed mutant PMP22 and MPZ proteins accumulated in the ER of Schwann cells. Overexpression of wild type and L16P mutant PMP22 also reduced cell viability, implying protein accumulation-mediated ER stress causes cell death. To develop more stable screening systems, we mimicked the ER stress-mediated cell death in Schwann cells using ER stress inducing chemicals. Thapsigargin treatment caused cell death via ER stress in a dose dependent manner, which was measured by expression of ER stress markers. Conclusion: We have developed genetically and chemically induced ER stress models using Schwann cells. Application of these models to HTS systems might facilitate the elucidation of molecular pathology and development of therapeutic options for CMT1.

Improvement of Aspergillus niger 55, a Raw Corn Meal Saccharifying Enzyme Hyperproducer, through Mutation and Selective Screening Techniques (옥수수 生 전분 당화 효소 高 생산성 변이주 개발)

  • Oh, Sung-Hoon;O, Pyong-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.140-146
    • /
    • 1991
  • Mutation experiments were performed to select the mutant of Aspergillus niger 55, which had lost almost all the ability to produce transglucosidases but retained that of high productivity of raw meal saccharifying enzyme, by means of successive induction with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG), ultraviolet(UV) light, and ${\gamma}$-rays. Also, we used the mutant enrichment techniques, such as liquid culture-filtration procedure and differential heat sensitivity of conidia, in order to increase the possibility of obtaining a mutant. The glucoamylase productivity of mutant PFST-38 was 11 times higher than that of the parent strain. The mutant PFST-38 was morphologically identical to the parent strain, except for the size of conidia, the tendency to form conidia and the lenght of conidiophore. Asp. niger mutant PFST-38 apeared to be useful for the submerged production of the raw corn meal saccharifying enzyme.

  • PDF

Evolution of E. coli Phytase for Increased Thermostability Guided by Rational Parameters

  • Li, Jiadi;Li, Xinli;Gai, Yuanming;Sun, Yumei;Zhang, Dawei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.419-428
    • /
    • 2019
  • Phytases are enzymes that can hydrolyze phytate and its salts into inositol and phosphoric acid, and have been utilized to increase the availability of nutrients in animal feed and mitigate environmental pollution. However, the enzymes' low thermostability has limited their application during the feed palletization process. In this study, a combination of B-value calculation and protein surface engineering was applied to rationally evolve the heat stability of Escherichia coli phytase. After systematic alignment and mining for homologs of the original phytase from the histidine acid phosphatase family, the two models 1DKL and 1DKQ were chosen and used to identify the B-values and spatial distribution of key amino acid residues. Consequently, thirteen potential amino acid mutation sites were obtained and categorized into six domains to construct mutant libraries. After five rounds of iterative mutation screening, the thermophilic phytase mutant P56214 was finally yielded. Compared with the wild-type, the residual enzyme activity of the mutant increased from 20% to 75% after incubation at $90^{\circ}C$ for 5 min. Compared with traditional methods, the rational engineering approach used in this study reduces the screening workload and provides a reference for future applications of phytases as green catalysts.

Transposon Tn5 Mutagenesis of Bradyrhizobium japonicum: A Histidine Auxotrophic Mutant of B. japonicum Shows Defective Nodulation Phenotype on Soybean

  • So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.110-113
    • /
    • 1995
  • Transposon Tn5 was used to induce random insertional mutations in Bradyrhizobium japonicum, a soybean endosymbiont. By genomic Southern blot analysis, transposition events were found to have occurred randomly throughout the B. japonicum genome. After screening 3, 626 mutants by auxotrophy test, a histidine auxotroph was isolated. Upon plant infection test, the His mutant showed a 3~4 day delay in nodule formation.

  • PDF

Studies on N-Ethyl-N-nitrosourea Mutagenesis in BALB/c Mice

  • Cho, Kyu-Hyuk;Cho, Jae-Woo;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.24 no.1
    • /
    • pp.59-68
    • /
    • 2008
  • N-ethyl-N-nitrosoures (ENU) is effective in inducing hypermorphic mutation as well as hypomorphic and antimorphic mutations. Therefore, this mutagen is used to the production of mutant in the mice. In order to perform an effective ENU mutagenesis using BALB/cAnN mice, determination of optimal dosage and dosage regimen of ENU is necessary. And this study tried to develop a suitable screening method and searched for novel and various mutants as model animals in phenotypedriven ENU mutagenesis. We have carried out dosage regimen for mutagenizing dose of 200 mg/kg ENU in the BALB/c mice. Total screened mice were 30,133. As the results of Esaki and Cho's Phenotype Screening, we got 2,516 phenotypic and behavior abnormalities in $G_1,\;G_2\;and\;G_3$ mice. One hundred thirty five $G_1$ phenodeviants were tested for inheritance and 16 dominant mutants were discovered. Forty two recessive mutants were also found in tested 201 micropedigrees. Early-onset mutant mice included the dysmorphology of face, eye, tail, limb, skin, and foot and abnormal behavior like circling, swimming, head tossing, stiff-walking, high cholesterol level, and tremor etc. In this study we could effectively screen $G_3$ recessive mutants. The frequent and concise early-onset screening before weaning will be available for ENU mutagenesis.

Screening and Characteristics of a Mutant of Actinoplanes teichomyceticus ATCC31121 Highly Producing Teicoplanin (Teicoplanin 생산성이 우수한 Actinoplanes teichomyceticus ATCC31121 변이주 선별 및 배양학적 특성)

  • 노용택
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.299-304
    • /
    • 2001
  • Teicoplanin is a kind of glycopeptide antibiotics produced by Actinoplanes teichomyceticus, and used in the clinical antibiotic such as vancomycin against methicillin-resistant Stabphylococcus aureus (MRSA). Actino planes teichomyceticus ATCC 31121 was mutated with UV to obtain a superior mutant strain with increased level of teicoplanin production. In this investigation, lethal curve was obtained and the optimal condition to induce mutagenesis was determined to isolate the desirable mutant strain. It was also confirmed that teicoplanin activities by agar diffusion method was compared with the parent strain. One mutant strain, T991014-1 with the highest productivity, was finally selected, and was characterized through the various tests such as amylase activity, protease activity, halotolerance, antibiotic resistance, autotoxicity, and productivity. Ad fermentation characteristics of the mutant strain were also studied.

  • PDF

Analysis of the Stoichiometry and the Domain for Interaction of Simian Virus 40 Small-t Antigen with Protein Phosphatase 2A

  • Yang, Sung-Il;Mumby, Marc C.
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.331-335
    • /
    • 1995
  • Simian virus 40 (SV40) small-t antigen (small-t) has been known to regulate the activity of a cellular enzyme, protein phosphatase 2A (PP2A), composed of A. B, and C subunits, via binding to the A subunit In the study presented here, the stoichiometry of the binding of small-t to PP2A was determined to be 1: 1. It was also shown that small-t binds to the AC form of PP2A with a higher apparent affinity than it binds to the free A subunit. We also characterized the interaction of PP2A with wild-type and various mutant small-ts. A single-point mutant (Val134Met) and a double-point mutant (Trp147Gly;Leu152 Pro) of small-t exhibited 3-fold and 5-fold lower potencies in inhibiting PP2A activity. respectively. This suggests that the region around amino acids between 134 and 152 of small-t might be important in regulating the enzyme activity of PP2A.

  • PDF