In this paper we derived the asymptotic distribution of the MUSIC null-spectrum, from which an exact expression of the asymptotic variance of the MUSIC null-spectrum can be obtained. From this result in addition an explicit expression of the normalized standard deviation (NSD) has been derived and it is shown that the NSD is affected by the number of sensors and the number of signals.
현재 유통되고 있는 디지털 음악 파일에서 일정 길이를 갖는 대표 부분을 주파수 신호 처리 기법을 통해 추출하는 방법을 제안한다. 인기곡의 저주파 스펙트럼이 $\frac{1}{\Large f}$ 특성을 갖는다는 가설을 바탕으로 대표 부분 추출 시스템을 구현하였다. 추출 시스템은 크게 음악의 검정 스펙트럼을 얻어 내는 전처리 과정과 유사도를 비교하여 점수화하는 과정으로 나눌 수 있다. 구현된 시스템으로 교향곡과 인기 가요를 분석하는 모의 실험을 통해 곡들의 듣기 좋다고 생각되는 일부분을 추출하였으며, 이 연구를 통해 음악 컨텐츠의 미리 듣기 자동 추출 제공을 제안한다.
입사 신호에 대한 배열 안테나의 응답인 array manifold를 측정에 의해 생성하는 방법을 기술하였으며, 기술된 방법에 의해 실측된 등간격 원형 배열 안테나의 array manifold를 MUSIC 알고리즘에 적용하여 배열 안테나로 입사되는 300 MHz tone 신호의 공간 스펙트럼을 추정하였다. 측정 array manifold를 이용한 공간 스펙트럼 추정은 이상적인 배열 안테나를 가정한 계산 array manifold 대비 월등한 성능을 보인다.
본 연구에서는 스펙트럼 분석과 신경망을 이용한 효과적인 음성/음악 분류 방법을 제안한다. 제안하는 방법은 스펙트럼을 분석하여 스펙트럴 피크 트랙에서 지속성 특징 파라미터인 MSDF(Maximum Spectral Duration Feature)를 추출하고 기존의 특징 파라미터인 MFSC(Mel Frequency Spectral Coefficients)와 결합하여 음성/음악 분류기의 특징으로 사용한다. 그리고 신경망을 음성/음악 분류기로 사용하였으며, 제안하는 방법의 성능 평가를 위해 학습 패턴 선별과 양, 신경망 구성에 따른 다양한 성능 평가를 수행하였다. 음성/음악 분류 결과 기존의 방법에 비해 성능 향상과 학습 패턴의 선별과 모델 구성에 따른 안정성을 확인할 수 있었다. MSDF와 MFSC를 특징 파라미터로 사용하고 50초 이상의 학습 패턴을 사용할 때 음성에 대해서는 94.97%, 음악에 대해서는 92.38%의 분류율을 얻었으며, MFSC만 사용할 때보다 음성은 1.25%, 음악은 1.69%의 향상된 성능을 얻었다.
In this paper, we propose that the contrast features of octave spectrum can be used to show spectral contrast features of some music clips. It shows the relative spectral distribution rather than average spectrum. From the experiment, it can be seen the method of spectral contrast features has a good performance in classification of music styles. Another comparative experiment shows that the method of spectral contrast features can better distinguish different music styles than the method of MFCC features that commonly used previously in the classification system of music styles.
본 논문은 음악 정보검색에 사용되는 효과적인 템포 특징 추출방식을 제안한다. 제안된 템포 정보는 협소 밴드상의 일시적인 변조 성분에 의해 형성된다. 이러한 변조 성분은 시간 축 상의 음악 신호로부터 스펙트럼을 구한 후, 각 스펙트럼 성분에 대한 주파수 영역 분석을 통해 획득된 변조 스펙트럼으로 구성된다. 실제 구현에 있어서는 MP3 음악파일로부터 부분 디코딩에 의해 출력된 변형된 이산 코사인 변환 계수에 퓨리에 변환을 취하여 변조스펙트럼을 구하였다. 획득된 변조 스펙트럼의 진폭으로부터 고속으로 추출된 음악 템포 특징값은 다양한 음악 정보 검색에 적용되었다. 음악 무드 및 장르 분류에서는 로그 변조 주파수 계수를 적용하여 분류 성능을 개선시켰으며, 적응 변조 스펙트럼에서 유도된 비트 벡터는 오디오 핑거프린팅에 적용되어 잡음환경 하에서도 검색 성능을 크게 향상시켰다.
본 논문에서는 공간에서 원하는 신호를 추정하기 위해서 도래방향 MUSIC 공간 스펙트럼 알고리즘에 대해서 연구한다. 본 연구에서 제안하는 MUSIC 공간 스펙트럼 알고리즘은 모델 오차와 베이즈 정리를 적용한 방법으로 목표물의 위치를 정확히 추정한다. 적응 배열 안테나를 사용한 수신기의 배열 응답 벡터는 베이즈 방법을 이용하고 모델 오차방법으로 수신 신호의 가중치를 갱신하여 원하는 목표물의 도래 방향을 정확히 추정한다. 본 연구에서 원하는 도래방향 목표물의 신호 추정은 입사 신호의 간섭과 잡음을 제거한 후 배열 응답 벡터를 신호 공분산 행렬의 가중치에 적용한다. 모의실험을 통해서 본 논문에서 제안한 방법과 기존의 도래방향 알고리즘을 비교 분석한다.
In this paper, we propose a robust music audio fingerprinting system for automatic music retrieval. The fingerprint feature is extracted from the long-term dynamic modulation spectrum (LDMS) estimation in the perceptual compressed domain. The major advantage of this feature is its significant robustness against severe background noise from the street and cars. Further the fast searching is performed by looking up hash table with 32-bit hash values. The hash value bits are quantized from the logarithmic scale modulation frequency coefficients. Experiments illustrate that the LDMS fingerprint has advantages of high scalability, robustness and small fingerprint size. Moreover, the performance is improved remarkably under the severe recording-noise conditions compared with other power spectrum-based robust fingerprints.
본 논문에서는 SAR (Synthetic Aperture Radar) 영상에 SVD (Singular Value Decomposition) - Pseudo Spectrum 알고리즘을 적용하고 그 성능을 기존 알고리즘과 비교한다. 이 논문의 목적은 SAR 영상의 해상도 및 목표물 분해능을 높이고자 하는 것이다. 본 논문에서는 신호 성분으로 이루어진 Hankel Matrix와 SVD (Singular Value Decomposition) 방법을 사용하여 잡음에 강인하고 sidelobe이 적으며 스펙트럼 추정에서 해상도를 높인 SVD-Pseudo Spectrum 방법을 제안하였다. 또한 분해될 목표물을 모델링하여 알고리즘의 성능을 분석하고 SVD-Pseudo Spectrum 방법이 기존의 퓨리에 변환 기반 방법과 고해상도 기술 기반의 MUSIC 방법보다 더 좋은 성능을 가짐을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.