• Title/Summary/Keyword: Music Similarity

Search Result 88, Processing Time 0.023 seconds

Sequence-based Similar Music Retrieval Scheme (시퀀스 기반의 유사 음악 검색 기법)

  • Jun, Sang-Hoon;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.167-174
    • /
    • 2009
  • Music evokes human emotions or creates music moods through various low-level musical features. Typical music clip consists of one or more moods and this can be used as an important criteria for determining the similarity between music clips. In this paper, we propose a new music retrieval scheme based on the mood change patterns of music clips. For this, we first divide music clips into segments based on low level musical features. Then, we apply K-means clustering algorithm for grouping them into clusters with similar features. By assigning a unique mood symbol for each cluster, we can represent each music clip by a sequence of mood symbols. Finally, to estimate the similarity of music clips, we measure the similarity of their musical mood sequence using the Longest Common Subsequence (LCS) algorithm. To evaluate the performance of our scheme, we carried out various experiments and measured the user evaluation. We report some of the results.

  • PDF

A Similarity Computation Algorithm Based on the Pitch and Rhythm of Music Melody (선율의 음높이와 리듬 정보를 이용한 음악의 유사도 계산 알고리즘)

  • Mo, Jong-Sik;Kim, So-Young;Ku, Kyong-I;Han, Chang-Ho;Kim, Yoo-Sung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3762-3774
    • /
    • 2000
  • The advances of computer hardware and information processing technologies raise the needs of multimedia information retrieval systems. Up to date. multimedia information systems have been developed for text information and image information. Nowadays. the multimedia information systems for video and audio information. especially for musical information have been grown up more and more. In recent music information retrieval systems. not only the information retrieval based on meta-information such like composer and title but also the content-based information retrieval is supported. The content-based information retrieval in music information retrieval systems utilize the similarity value between the user query and the music information stored in music database. In tbis paper. hence. we developed a similarity computation algorithm in which the pitches and lengths of each corresponding pair of notes are used as the fundamental factors for similarity computation between musical information. We also make an experiment of the proposed algorithm to validate its appropriateness. From the experimental results. the proposed similarity computation algorithm is shown to be able to correctly check whether two music files are analogous to each other or not based on melodies.

  • PDF

Similarity Evaluation of Popular Music based on Emotion and Structure of Lyrics (가사의 감정 분석과 구조 분석을 이용한 노래 간 유사도 측정)

  • Lee, Jaehwan;Lim, Hyewon;Kim, Hyoung-Joo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.10
    • /
    • pp.479-487
    • /
    • 2016
  • People can listen to almost every type of music by music streaming services without possessing music. Ironically it is difficult to choose what to listen to. A music recommendation system helps people in making a choice. However, existing recommendation systems have high computation complexity and do not consider context information. Emotion is one of the most important context information of music. Lyrics can be easily computed with various language processing techniques and can even be used to extract emotion of music from itself. We suggest a music-level similarity evaluation method using emotion and structure. Our result shows that it is important to consider semantic information when we evaluate similarity of music.

A code-based chromagram similarity for cover song identification (커버곡 검색을 위한 코드 기반 크로마그램 유사도)

  • Seo, Jin Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.314-319
    • /
    • 2019
  • Computing chromagram similarity is indispensable in constructing cover song identification system. This paper proposes a code-based chromagram similarity to reduce the computational and the storage costs for cover song identification. By learning a song-specific codebook, a chromagram sequence is converted into a code sequence, which results in the reduction of the feature storage cost. We build a lookup table over the learned codebooks to compute chromagram similarity efficiently. Experiments on two music datasets were performed to compare the proposed code-based similarity with the conventional one in terms of cover song search accuracy, feature storage, and computational cost.

A Study of Extended Recommendation Method Using Synonym Tags Mapping Between Two Types of Contents (콘텐츠들 간의 유의어 태그매핑을 이용한 확장된 추천기법의 연구)

  • Kim, Jiyeon;Kim, Youngchang;Jung, Jongjin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • Recently recommendation methods need personalization and diversity as well as accuracy whereas the traditional researches have been mainly focused on the accuracy of recommendation in terms of quality. The diversity of recommendation is also important to people in terms of quantity in addition to quality since people's desire for content consumption have been stronger rapidly than past. In this paper, we pay attention to similarity of data gathered simultaneously among different types of contents. With this motivation, we propose an enhanced recommendation method using correlation analysis with considering data similarity between two types of contents which are movie and music. Specifically, we regard folksonomy tags for music as correlated data of genres for movie even though they are different attributes depend on their contents. That is, we make result of new recommendation movie items through mapping music folksonomy tags to movie genres in addition to the recommendation items from the typical collaborative filtering. We evaluate effectiveness of our method by experiments with real data set. As the result of experimentation, we found that the diversity of recommendation could be extended by considering data similarity between music contents and movie contents.

Analysis technique to support personalized music education based on learner and chord data (맞춤형 음악 교육을 지원하기 위한 학습자 및 코드 데이터 분석 기법)

  • Jung, Woosung;Lee, Eunjoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.51-60
    • /
    • 2021
  • Due to the growth of digital media technology, there is increasing demand of personalized education based on context data of learners throughout overall education area. For music education, several studies have been conducted for providing appropriate educational contents to learners by considering some factors such as the proficiency, the amount of practice, and their capability. In this paper, a technique has been defined to recommend the appropriate music scores to learners by extracting and analyzing the practice data and chord data. Concretely, several meaningful relationships among chords patterns and learners were analyzed and visualized by constructing the learners' profiles of proficiency, extracting the chord sequences from music scores. In addition, we showed the potential for use in personalized education by analyzing music similarity, learner's proficiency similarity, learner's proficiency of music and chord, mastered chords and chords sequence patterns. After that, the chord practice programs can be effectively generated considering various music scores using the synthetically summarized chord sequence graphs for the music scores that the learners selected.

The Weight Decision of Multi-dimensional Features using Fuzzy Similarity Relations and Emotion-Based Music Retrieval (퍼지 유사관계를 이용한 다차원 특징들의 가중치 결정과 감성기반 음악검색)

  • Lim, Jee-Hye;Lee, Joon-Whoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.637-644
    • /
    • 2011
  • Being digitalized, the music can be easily purchased and delivered to the users. However, there is still some difficulty to find the music which fits to someone's taste using traditional music information search based on musician, genre, tittle, album title and so on. In order to reduce the difficulty, the contents-based or the emotion-based music retrieval has been proposed and developed. In this paper, we propose new method to determine the importance of MPEG-7 low-level audio descriptors which are multi-dimensional vectors for the emotion-based music retrieval. We measured the mutual similarities of musics which represent a pair of emotions expressed by opposite meaning in terms of each multi-dimensional descriptor. Then rough approximation, and inter- and intra similarity ratio from the similarity relation are used for determining the importance of a descriptor, respectively. The set of weights based on the importance decides the aggregated similarity measure, by which emotion-based music retrieval can be achieved. The proposed method shows better result than previous method in terms of the average number of satisfactory musics in the experiment emotion-based retrieval based on content-based search.

Music Structure Analysis and Application (악곡구조 분석과 활용)

  • Seo, Jung-Bum;Bae, Jae-Hak
    • The KIPS Transactions:PartB
    • /
    • v.14B no.1 s.111
    • /
    • pp.33-42
    • /
    • 2007
  • This paper presents a new methodology for music structure analysis which facilitates rhetoric-based music summarization. Similarity analysis of musical constituents suggests the structure of a musical piece. We can recognize its musical form from the structure. Musical forms have rhetorical characteristics of their on. We have utilized the characteristics for locating musical motifs. Motif extraction is to music summarization what topic sentence extraction is to text summarization. We have evaluated the effectiveness of this methodology through a popular music case study.

A Study on the Performance of Music Retrieval Based on the Emotion Recognition (감정 인식을 통한 음악 검색 성능 분석)

  • Seo, Jin Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.247-255
    • /
    • 2015
  • This paper presents a study on the performance of the music search based on the automatically recognized music-emotion labels. As in the other media data, such as speech, image, and video, a song can evoke certain emotions to the listeners. When people look for songs to listen, the emotions, evoked by songs, could be important points to consider. However; very little study has been done on the performance of the music-emotion labels to the music search. In this paper, we utilize the three axes of human music perception (valence, activity, tension) and the five basic emotion labels (happiness, sadness, tenderness, anger, fear) in measuring music similarity for music search. Experiments were conducted on both genre and singer datasets. The search accuracy of the proposed emotion-based music search was up to 75 % of that of the conventional feature-based music search. By combining the proposed emotion-based method with the feature-based method, we achieved up to 14 % improvement of search accuracy.

An investigation of chroma n-gram selection for cover song search (커버곡 검색을 위한 크로마 n-gram 선택에 관한 연구)

  • Seo, Jin Soo;Kim, Junghyun;Park, Jihyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.436-441
    • /
    • 2017
  • Computing music similarity is indispensable in constructing music retrieval system. This paper focuses on the cover song search among various music-retrieval tasks. We investigate the cover song search method based on the chroma n-gram to reduce storage for feature DB and enhance search accuracy. Specifically we propose t-tab n-gram, n-gram selection method, and n-gram set comparison method. Experiments on the widely used music dataset confirmed that the proposed method improves cover song search accuracy as well as reduces feature storage.