• Title/Summary/Keyword: Muscular atrophy

Search Result 110, Processing Time 0.031 seconds

The Effects of Acupuncture at GB34 on Disuse Muscle Atrophy in Rats (흰쥐의 불용성 근위축에 양릉천 자침이 미치는 효과)

  • Kim, Bum Hoi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.28 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • Objectives Disuse muscle atrophy occurs in response to pathologies such as joint immobilization, inactivity or bed rest. Muscle disuse is accompanied by an increase in apoptotic signaling, which mediates some of the responses to unloading in the muscle. GB34 (Yanglingquan) is a acupuncture point on the lower leg and one of the most frequently used points in various skeletomuscular diseases. In this study, the hypothesis that the acupuncture at GB34 could attenuate immobilization-induced skeletal muscle atrophy was tested. Methods The left hindlimb immobilization was performed with casting tape in both GB34 group (n=10) and Control group (n=10). The rats in GB34 group were daily treated with acupuncture at GB34. After 2 weeks of immobilization, the morphology of right and left gastrocnemius muscles in both GB34 and Control groups were assessed by hematoxylin and eosin staining. To investigate the immobilization-induced muscular apoptosis, the immunohistochemical analysis of Bax and Bcl-2 was carried out. Results GB34 group represented the significant protective effects against the reductions of the left gastrocnemius muscles weight and average cross section area to compared with Control group. The acupuncture at GB34 significantly reduced the immunoreactivity of BAX and increased the immunoreactivity of Bcl-2 in gastrocnemius muscle compared with Control group. Conclusions These results suggest that the acupuncture at GB34 has protective effects against immobilization-induced muscle atrophy by regulating the activities of apoptosis-associated BAX/Bcl-2 proteins in gastrocnemius muscle.

Effects of Electrical Muscle Stimulation for Preventing Deltoid Muscle Atrophy after Rotator Cuff Repair: Preliminary Results of a Prospective, Randomized, Single-blind Trial

  • Lee, Goo Joo;Cho, Hangyeol;Ahn, Byung-Hyun;Jeong, Ho-Seung
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.4
    • /
    • pp.195-202
    • /
    • 2019
  • Background: This study investigates the effects of neuromuscular electrical stimulation (NMES) in preventing deltoid atrophy during the first 12 weeks after arthroscopic rotator cuff repair. Methods: Eighteen patients undergoing arthroscopic repair of a medium-sized rotator cuff tear by a single surgeon, were randomized into two groups: NMES and transcutaneous electrical nerve stimulation (TENS). Each group used the respective device for 6 weeks after surgery. Pain was measured at baseline, 6, and 12 weeks postoperatively, using the visual analogue scale (VAS); range of motion (ROM), abduction strength and functional scores were measured at baseline and 12 weeks postoperatively. Deltoid thickness and cross-sectional areas were measured using magnetic resonance imaging at 12 weeks postoperatively. Results: At 12 weeks post-surgery, no statistically significant difference was observed between the NMES and TENS groups in the pain VAS, the Disabilities of the Arm, Shoulder and Hand score, ROM, and abduction strength. Postoperative decrease in the thickness of the anterior, middle, and posterior deltoid, at the level just below the coracoid, was -2.5%, -0.7%, and -6.8%, respectively, in the NMES group, and -14.0%, -2.6%, and -8.2%, respectively, in the TENS group (p=0.016, p=0.677, and p=0.791, respectively). At the level of the inferior glenoid tubercle, postoperative decrease in area of the deltoid was -5.4% in the NMES group and -14.0% in the TENS group, which was significantly different (p=0.045). Conclusions: NMES has the potential for reducing deltoid atrophy after arthroscopic rotator cuff repair, suggesting that NMES might help minimize postoperative atrophy after various shoulder surgeries.

Association between cancer metabolism and muscle atrophy (암 대사와 근위축의 연관성)

  • Yeonju Seo;Ju-Ock Nam
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.387-396
    • /
    • 2022
  • Skeletal muscle accounts for about 40-50% of body weight and is an important tissue that performs various functions, such as maintaining posture, supporting soft tissues, maintaining body temperature, and respiration. Cancer, which occurs widely around the world, causes cancer cachexia accompanied by muscular atrophy, which reduces the effectiveness of anticancer drugs and greatly reduces the quality of life and survival rate of cancer patients. Therefore, research to improve cancer cachexia is ongoing. However, there are few studies on the link between cancer and muscle atrophy. Cancer cells exhibit distinct microenvironment and metabolism from tumor cells, including tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), and insulin resistance due to the Warburg effect. Therefore, we summarize the microenvironment and metabolic characteristics of cancer cells, and the molecular mechanisms of muscle atrophy that can be affected by cytokine and insulin resistance. In addition, this suggests the possibility of improving cancer cachexia of substances affecting TAM, TAN, and Warburg effect. We also summarize the mechanisms identified so far through single agents and the signaling pathways mediated by them that may ameliorate cancer cachexia.

Etiological Classification and Developmental Outcomes in Floppy Infants: A Single Tertiary Center Experience (늘어지는 영아 증후군의 진단적 분류와 발달 예후: 단일 3차 병원에서의 연구)

  • Park, Jung Min;Choi, Young Ha;Lee, Ha Neul;Chung, Hee Jung
    • Journal of the Korean Child Neurology Society
    • /
    • v.26 no.4
    • /
    • pp.189-196
    • /
    • 2018
  • Purpose: Floppy infants or congenital hypotonia indicates decreased muscle tone in infants secondary to abnormalities of the central or the peripheral nervous system, or both. Previous literature classified its causes as those attributable to a central vs. peripheral origin; however, recent studies have introduced a newer classification describing a combined origin. We invenstigated floppy infants by applying the new etiological classification and reviewed the most common etiologies based on the age of presentation. We additionally reviewed the clinical characteristics, diagnoses, and the developmental outcomes in these infants. Methods: We retrospectively reviewed the electronic medical charts and recruited 116 infants diagnosed with floppy infant syndrome between January 2005 and December 2016 at Severance Children's Hospital. Among these infants, 66 with a confirmed diagnosis were reviewed for the etiological classification. Information regarding developmental outcomes was obtained via phone interviews with the infants' families. Results: Based on the new etiological classification, among 69 infants with a confirmed diagnosis, in 40 (34.5%) this syndrome was of central origin, in 19 (16.4%) of peripheral origin, and in 10 (8.6%) of combined origin. Prader-Willi syndrome, myotonic dystrophy, and spinal muscular atrophy were the most common disorders observed and combined hypotonia showed the poorest developmental outcome. Conclusion: The study states the importance of proper evaluation of etiological diagnosis and optimal intervention for developmental prognosis. The introduction of a new etiological group of combined hypotonia especially emphasizes regular monitoring and timely rehabilitative intervention in patients for the better quality of life in them as well as their caregivers.

Germinated Rhynchosia nulubilis Hydrolysate Ameliorates Dexamethasone-induced Muscle Atrophy by Downregulating MAFbx Expression in C2C12 Cells and C57BL/6 Mice (발아 서목태 가수분해물의 근위축 억제 효과)

  • Won Keong Lee;Eun Ji Kim;Sang Gon Kim;Young Min Goo;Young Sook Kil;Seung Mi Sin;Min Ju Ahn;Min Cheol Kang;Young-Sool Hah
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.277-286
    • /
    • 2023
  • Sarcopenia is the age-related loss of muscle mass and function. It is a natural part of aging and can lead to decreased mobility and increased frailty. The ubiquitin-proteasome pathway, which is involved in muscle protein degradation, is closely linked to sarcopenia. Germinated Rhynchosia nulubilis hydrolysate (GRH) has been reported to have anti-inflammatory and antioxidant properties, but there have been no reports on its inhibitory effect on muscle reduction. However, no study has yet explored the relationship between GRH and muscle loss inhibition. In this study, we evaluated the effects of GRH on muscle atrophy inhibitory activity in dexamethasone (Dexa)-induced muscle atrophy C2C12 myotubes and mouse models. Moreover, we identified a molecular pathway underlying the effects of GRH on skeletal muscle. May Grunwald-Giemsa staining showed that the length and area of myotubes increased in the groups treated with GRH. In addition, the GRH-treated group significantly reduced the expression of muscle ring finger protein 1 and muscular atrophy F-box (MAFbx) in the Dexa-induced muscular atrophy C2C12 model. GRH also improved muscle strength in C57BL/6 mice with Dexa-induced muscle atrophy, resulting in prolonged running exhaustive time and increased grip strength. We found that muscle strengthening by GRH was correlated with a decreased expression of the MAFbx gene in mouse muscle tissue. In conclusion, GRH can attenuate Dexa-induced muscle atrophy by inhibiting the ubiquitin-proteasome pathway via downregulation of the MAFbx gene expression.

The Electrophysiologic Features of Pediatric Patients Presenting The Floppy Infant Syndrome: A 10-year Experience (저긴장아 증후군 소아의 전기생리학적검사 결과: 10년간의 경험)

  • Seok, Jung Im;Joo, In Soo;Lee, Jin Soo;Kim, Sung Hwan
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.1
    • /
    • pp.36-39
    • /
    • 2006
  • Background: Floppy infant syndrome has a number of different etiologies. Methods: One hundred twenty-three consecutive patients of floppy infant syndrome were included in this study. We reviewed all the electrophysiologic tests of these patients and the medical record of patients showing abnormalities in the electrophysiologic studies. Results: Of the 123 patients, twenty-six (21.1%) showed definite abnormalities in electrophysiologic tests; 8 myopathies, 14 neuropathies and 4 unclassified. The neuropathy was further classified as 5 neuronopathies and 9 sensorimotor polyneuropathies. With muscle or sural nerve biopsy and genetic test, a final diagnosis was made of Duchenne muscular dystrophy in 4, Becker muscular dystrophy in 1, spinal muscular atrophy in 2, and metachromatic leukodystrophy in 1. Conclusions: About 21% of patients presented with floppy infant syndrome showed abnormalities in the neuromuscular system. The electrophysiologic test is valuable to guide further investigations in diagnosing the cause of floppy infant syndrome.

  • PDF

The effect of fibroblast growth factor receptor inhibition on resistance exercise training-induced adaptation of bone and muscle quality in mice

  • Cho, Suhan;Lee, Hojun;Lee, Ho-Young;Kim, Sung Joon;Song, Wook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.207-218
    • /
    • 2022
  • Aging in mammals, including humans, is accompanied by loss of bone and muscular function and mass, characterized by osteoporosis and sarcopenia. Although resistance exercise training (RET) is considered an effective intervention, its effect is blunted in some elderly individuals. Fibroblast growth factor (FGF) and its receptor, FGFR, can modulate bone and muscle quality during aging and physical performance. To elucidate this possibility, the FGFR inhibitor NVP-BGJ398 was administrated to C57BL/6n mice for 8 weeks with or without RET. Treatment with NVPBGJ398 decreased grip strength, muscular endurance, running capacity and bone quality in the mice. FGFR inhibition elevated bone resorption and relevant gene expression, indicating altered bone formation and resorption. RET attenuated tibial bone resorption, accompanied by changes in the expression of relevant genes. However, RET did not overcome the detrimental effect of NVP-BGJ398 on muscular function. Taken together, these findings provide evidence that FGFR signaling may have a potential role in the maintenance of physical performance and quality of bone and muscles.

Myocardial atrophy in children with mitochondrial disease and Duchenne muscular dystrophy

  • Lee, Tae Ho;Eun, Lucy Youngmin;Choi, Jae Young;Kwon, Hye Eun;Lee, Young-Mock;Kim, Heung Dong;Kang, Seong-Woong
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.5
    • /
    • pp.232-239
    • /
    • 2014
  • Purpose: Mitochondrial disease (MD) and Duchenne muscular dystrophy (DMD) are often associated with cardiomyopathy, but the myocardial variability has not been isolated to a specific characteristic. We evaluated the left ventricular (LV) mass by echocardiography to identify the general distribution and functional changes of the myocardium in patients with MD or DMD. Methods: We retrospectively evaluated the echocardiographic data of 90 children with MD and 42 with DMD. Using two-dimensional echocardiography, including time-motion (M) mode and Doppler measurements, we estimated the LV mass, ratio of early to late mitral filling velocities (E/A), ratio of early mitral filling velocity to early diastolic mitral annular velocity (E/Ea), stroke volume, and cardiac output. A "z score" was generated using the lambda-mu-sigma method to standardize the LV mass with respect to body size. Results: The LV mass-for-height z scores were significantly below normal in children with MD ($-1.02{\pm}1.52$, P<0.001) or DMD ($-0.82{\pm}1.61$, P =0.002), as were the LV mass-for-lean body-mass z scores. The body mass index (BMI)-for-age z scores were far below normal and were directly proportional to the LV mass-for-height z scores in both patients with MD (R =0.377, P<0.001) and those with DMD (R =0.330, P=0.033). The LV mass-for-height z score correlated positively with the stroke volume index (R =0.462, P<0.001) and cardiac index (R =0.358, P<0.001). Conclusion: LV myocardial atrophy is present in patients with MD and those with DMD and may be closely associated with low BMI. The insufficient LV mass for body size might indicate deterioration of systolic function in these patients.

The Effects of Daeyeoung-jeon on the Prevention of Disuse Muscle Atrophy in Rats (대영전(大營煎)이 불용성 근위축에서의 apoptosis 관련 단백질들의 발현변화에 미치는 영향)

  • Kim, Bum Hoi
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.499-508
    • /
    • 2017
  • Objectives : Skeletal muscle atrophy occurs in response to a variety of conditions. The unloading to muscle occurs clinically in limb immobilization, bed rest, spinal cord injury and peripheral nerve damage, resulting in significant loss of muscle mass and force production. Muscle disuse is accompanied by an increase in apoptotic signaling, which mediates some of the responses to unloading in the muscle. In this study we tested the hypothesis that Daeyeoung-jeon extract would improve muscle recovery after reloading following disuse. Method : Twenty young male Sprague-Dawley rats were used for the studies. The hindlimb immobilization was performed with casting tape to keep the left ankle joint in a fully extended position. No intervention was performed on the right leg and used as intact region. The Rats in Daeyeoung-jeon treated group (DYJ) were orally administrated Daeyeoung-jeon water extract, and rats of Control group were given with saline only. After 2 weeks of immobilization, all animals were sacrificed, and the whole gastrocnemius muscles were dissected from both legs. The morphology of right and left gastrocnemius muscles in both DYJ and Control groups were assessed by hematoxylin and eosin staining. Moreover, to investigate the immobilization-induced muscular apoptosis, the immunohistochemical analysis of Bax and Bcl-2 was carried out. Results : Daeyeoung-jeon represented the significant protective effects against the reductions of the left gastrocnemius muscles weight and average cross section area to compared with Control group. The treatment with Daeyeoung-jeon extract significantly reduced the immunoreactivity of BAX and increased the immunoreactivity of Bcl-2 in gastrocnemius muscle compared with Control group. Conclusion : Daeyeoung-jeon has protective effects against immobilization-induced muscle atrophy by regulating the activities of apoptosis-associated BAX/Bcl-2 proteins in gastrocnemius muscle.