• Title/Summary/Keyword: Muscle glycogen

Search Result 165, Processing Time 0.021 seconds

Effects of Electrical Stimulation on Normal Soleus Muscle in Rat (전기자극이 흰쥐의 정상 가자미근 형태에 미치는 영향)

  • Park Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.6 no.1
    • /
    • pp.61-74
    • /
    • 1994
  • This study was carried out to determine effects of electrical stimulation on the soleus, target muscle of the sciatic newt, of white rat normal muscles. The biometric, histochemical, ultrastructural observations were made. The following results were obtained. A daily electrical stimulation of the skeletal muscle of the normally-functioning rat caused an increase of girth and weight of the muscle fibers for 2 weeks. No noticeable change was observed afterwards. More specifically, the density of volume of the red muscle fiber increased. whereas the density of the white muscle fiber decreased. The electrical stimulation group(experimental group) showed hypertrophy of the muscle fibers and narrowing of the space between perimysium and endomysium. Normally, glycogen granules are accumulated regardless of classification of muscle fibers. In addition, the NADH-TR reaction results were in agreement with the biometric findings, in that the red muscle fibers significantly increased. The ultrastructural observations revealed that mitochondria was formed in the red muscle fiber parallel to the muscle fibers of normal muscle, while mitochondria was observed in the sarcomere region of the white muscle fiber. However, activation of mitochondria took place in the sarcolemma region of the muscle fiber, and generation of mitochondria was observed in the sarcomere region of the white muscle fiber.

  • PDF

Comparison of Stress in General Farms and Animal Welfare Farms Using Feather Corticosterone Analysis (Feather corticosterone 분석을 통한 일반농장과 동물복지농장의 스트레스 비교)

  • Kim, Jong-Ryun;Choe, Ho-Seong;Shim, Kwan-Seob
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.706-711
    • /
    • 2022
  • Broiler chickens are exposed to various stresses throughout their lives, and those stresses affect their well-being and meat quality. Therefore, the farm breeding system is critical for reducing stress in broilers and improving animal welfare. This study was conducted to evaluate the difference between general farms and animal welfare farms and to evaluate feather corticosterone as an index for measuring stress. Samples of 28-day-old broilers (blood, feathers, and muscle) were collected from slaughter-houses, and corticosterone, along with HSP70, glycogen, and L-lactate, were extracted from feathers and serum as indicators of broiler stress levels and energy metabolism. The analysis results confirmed a significantly (p<0.01) higher feather cortisone level in the general farm group than in the welfare farm group, but no significance was detected for serum corticosterone. HSP70 levels did not differ in muscles and feathers. Glycogen levels were significantly higher in the general farm group than in the welfare farm group (p<0.01), but L-lactate levels showed no difference. Our results suggest that feather corticosterone can be used as an indicator to evaluate stress differences between general farms and animal welfare farms and that long-term stress can be assessed.

Comparison of Physicochemical Characteristics of Hot-boned Chicken Breast and Leg Muscles during Storage at 20℃

  • Yu, Long-Hao;Lee, Eui-Soo;Chen, Hong-Sheng;Jeong, Jong-Youn;Choi, Yun-Sang;Lim, Dong-Gyun;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.676-683
    • /
    • 2011
  • The aim of this study was to compare the physicochemical changes of hot-boned chicken breast and leg muscles. Chicken breast and leg muscles from 56 broilers were excised within a 15 min post-mortem (PM) and stored at $20^{\circ}C$. Physicochemical traits were determined at 0.5, 6, 12, and 24 h PM. The ultimate pH of leg muscle was higher than that of breast muscle (p<0.05). The content of glycogen in the breast muscle was relatively higher than that in the leg muscle until 6 h PM (p<0.05). R-values showing rigor mortis of breast and leg muscles were completed after or before 6 h PM. Breast muscle had less cooking loss than leg muscle (p<0.05). Drip loss did not significantly differ between breast and leg muscles with the exception of that at 6 h PM. The sarcomere length of leg muscle was relatively longer than that of breast muscle (p<0.05). The MFI of leg muscle was significantly lower than that of breast muscle (p<0.05). The shear force of leg muscle was lower than that of breast muscle at 6 and 12 h PM (p<0.05); however, that of both muscles did not significantly differ at 24 h PM.

The Effect of Regular Physical Exercise on Glucose Uptake in Soleus and Intravenous Glucose Tolerance in Streptoztocin Diabetic Rats (규칙적인 운동부하가 Streptozotocin 투여 흰쥐 골격근의 당섭취와 당내성에 미치는 영향)

  • Chun, Myung-Heup;Kim, Yong-Woon;Kim, Jong-Yeon;Lee, Young-Man;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.1
    • /
    • pp.121-129
    • /
    • 1992
  • The effect of exercise on plasma insulin, free fatty acid, and glucose uptake and glycogen concentration in soleus, and intravenous glucose tolerance of streptozotocin treated, diabetic Sprague-Dawley rats were studied. Diabetic-trained animals were Subjected to a regular program of treadmill running for 4 weeks. Seventy-two hours after the last training session, basal and insulin-stimulated glucose uptake was studied in incubated strips(about 20mg) of soleus muscle in vitro. Glucose tolerance was measured with intravenous infusion of 0.5g glucose/kg body weight. In diabetic rats, training was associated with increased glucose uptake in basal and maximal insulin concentrations, decreased fasting glucose concentrations, and increased muscle glycogen levels, but there were no changes in glucose tolerance curve and plasma insulin concentrations. These results suggest that regular running program for 4 weeks improve responsiveness of insulin on soleus muscle, but fails to cause improvement of impaired intravenous glucose tolerance in mild degree streptozotocin induced diabetic rats.

  • PDF

A Case of Glycogen Storage Disease Type III Diagnosed by Gene Panel Sequencing (유전자 패널 검사로 진단된 당원병 III형 증례)

  • Kim, Seong Wan;Jang, Ju Young;Lee, Jang Hoon;Sohn, Young Bae;Jang, Ja-Hyun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.20 no.1
    • /
    • pp.24-28
    • /
    • 2020
  • Type III Glycogen storage disease (Type III GSD, OMIM#232400) is a genetic metabolic disorder in which undigested glycogen accumulates in the organs due to lack of glycogen debranching enzyme caused by AGL mutation. The clinical symptoms of type III GSD include hepatomegaly, delayed growth, hypoglycemia and muscle weakness. These clinical symptoms are similar to those of other types of GSD, making it difficult to distinguish clinically. The authors report a case of type III GSD diagnosed by gene panel sequencing. A 11-month old male patient was presented with hepatomegaly. In liver biopsy, glycogen was accumulated in hepatocytes, suggesting GSDs. For differential diagnosis of types of GSD, gene panel sequencing for GSDs was performed. As a result, two novel pathogenic compound heterozygous variants: c.311_312del (p.His104Argfs*15) and c.3314+1G>A in AGL were detected and the patient was diagnosed as type III GSD. After diagnosis, he started dietary treatment with cornstarch, and has been free from complications. After two years, two same variants were also identified in the chorionic villous sampling of the pregnant mother, and the fetus was diagnosed as type III GSD. Gene panel sequencing is useful for diagnosis of disease which is indistinguishable by clinically and has high genetic heterogeneity, such as GSD. After diagnosis, familial genetic analysis can provide adequate genetic counseling and rapid diagnosis.

Effects of Alisma canaliculatum Butanol Fraction with Vitamin E on Glycogen, Lipid Levels, and Lipid Peroxidation in Streptozotocin-induced Diabetic Rats (택사 butanol 분획물과 vitamin E의 투여가 streptozotocin 유발 당뇨 흰쥐의 글리코겐, 지질함량 및 지질과산화에 미치는 영향)

  • Han, Hye-Kyoung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.465-471
    • /
    • 2004
  • This study was designed to investigate the effect of a butanol (BuOH) fraction of Alisma canaliculatum (Ac) with/without vitamin E (VE) on glycogen, lipid levels and oxidative stress in streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley rats were divided into 5 groups: normal, STZ-control, and 3 diabetic experimental groups. Diabetes was induced by injection of STZ (45 mg) into the tail vein. The BuOH fraction of Ac and VE were administrated orally in rats for 21 days: Ac group (400 mg), Ac-VE group (Ac 400 mg & vitamin E 10 mg) and VE group (10 mg). Liver and muscle glycogen levels decrease in STZ-control group versus normal group and these alteration in glycogen levels were prevented Ac-VE group and VE group. Oral administration of Ac or VE resulted in reduction in liver cholesterol. Liver triglycerides were significantly higher in the VE group than in STZ-control group. Liver malondialdehyde (MDA) was increase in STZ-control group compared to normal group, but that of Ac group and Ac-VE group were similar to normal group. Meanwhile MDA in kidney, lung and pancreas were not significantly different among five groups. Ac-VE group increase lung protein that were significantly higher than diabetic control rats. These results suggest that the VE could increase glycogen and triglyceride levels and BuOH fraction of Ac decrease MDA of liver in the diabetic rats. The use of Ac together with VE did not show better control hyperglycemia-induced oxidative stress.

Effect of Allopurinol on Ultrastructural Changes in Ischemia Reperfusion Injury to Skeletal Muscle of Rats After Graded Periods of Complete Ischemia (흰쥐에서 허혈시간에 따라 재관류후 나타나는 근조직의 미세구조 변화에 allopurinol이 미치는 영향)

  • Paik, Doo-Jin;Chun, Jae-Hong
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.51-62
    • /
    • 1995
  • It has been well known that ischemia and reperfusion injury to skeletal muscle following an acute arterial occlusion causes significant morbidity and mortality. The skeletal muscle, which contains high energy phosphate compounds, has ischemic tolerance. During the ischemia, the ATP is catalyzed to hypoxanthine anaerobically and hypoxanthine dehydrogenase is converted to xanthine oxidase. During reperfusion, the hypoxanthine is catalyzed to xanthine by xanthine oxidase under $O_2$, presence and that results in production of cytotoxic oxygen free radicals. These cytotoxic free radicals, $O_2^-,\;H_{2}O_2,\;OH^-$, are toxic and make lesions in skeletal muscle during reperfusion. The authors perform the present study to investigate the effects of allopurinol, the inhibitor of xanthine oxidase, on reperfused ischemic skeletal muscles by observing the ultrastructural changes of the muscle fibers. A total of 48 healthy Sprague-Dawley rats weighing from 200 g to 250 g were used as experimental animals. Under urethane(3.0mg/kg., IP) anesthesia, lower abdominal incision was done and the left common iliac artery were ligated by using vascular clamp for 1, 2 and 6 hours. The left rectus femoris muscles were obtained at 6 hours after the removal of vascular clamp. In the allopurinol pretreated group, 50mg/kg of allopurinol was administered once a day for 2 days and before 2 hours of ischemia. The specimens were sliced into $1mm^3$ and prepared by routine methods for electron microscopic observations. All preparations were stained with uranyl acetate and lead citrate, and then observed with Hitachi -600 transmission electron microscope. The results were as follows: 1. In 1 hour ischemia/6 hours reperfused rectus femoris muscles of rats, decreased glycogen particles and electron density of mitochondrial matrix and dilated terminal cisternae are seen. In 2 hours ischemia/6 hours repersed rectus femoris muscles of rats, mitochondria with electron lucent matrix, irregularly dilated triad and spheromembranous bodies are observed. In 6 hours ischemia/6 hours reperfused rectus femoris muscles of rats, irregularly arranged myofibrils, and many spheromembranous bodies, fat droplets and lysosome are seen. 2. In 1 hour ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol, decreased glycogen particle and dilated cisternae of sarcoplasmic reticulum and triad are observed. In 2 hours ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol decreased electron density of mitochondrial matrix and spheromembranous bodies are seen. In 6 hours ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol, mitochondria with electron lucent matrix, spheromembranous bodies and dilated cisternae of sarcoplasmic reticulum and terminal cistern are observed. The results suggest that the allopurinol attenuates the damages of the skeletal muscles of rats during ischemia and reperfusion.

  • PDF

Changes in the Free Amino Acid Content of the Shucked Oyster Crassostrea gigas Stored in Salt Water at 3℃

  • Tanimoto, Shota;Kawakami, Koji;Morimoto, Satoshi
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • Shucked oysters were soaked in an equal weight of salt water and stored at $3^{\circ}C$ for 7 days. Changes in the free amino acid content of the whole body and in the adductor muscle were evaluated by a practical distribution method. With the exception of aspartic acid and tyrosine, no significant changes in free amino acids or ammonia were observed in whole-body shucked oysters during the storage period. In contrast, the majority of free amino acids in the adductor muscle decreased significantly. Most of these free amino acids were detected in considerable amounts in the surrounding salt water after 7 days of storage. Both the weight of the whole body and the salinity of the surrounding salt water decreased significantly during the storage period. These results suggest that free amino acids were eluted from the cutting surface of the adductor muscle and indicate that the free amino acid content per shucked oyster and in the adductor muscle, decreases during cold storage.

Effect of electrical stimulation on disused rat soleus (전기자극이 흰쥐의 가자미근 무용성 위축에 미치는 영향)

  • Bae Sung Soo;Park Rae Joon;Kim Jin Sang;Park Sang OK
    • The Journal of Korean Physical Therapy
    • /
    • v.3 no.1
    • /
    • pp.175-188
    • /
    • 1991
  • A study was performed to investigate the effect of electrical stimulation on disused rat soleus muscle, of male rat. The animal's hindlimbs were immobilized 4weeks by plaster of paris, and stimulated with E. S. T for 4weeks (20min/day) The changes on soleus were examined with histochemical, histological, and morphometric method. The results are summarized as follows. 1. Disued atrophy group from immobilization, which margin of sarcolemma and myofibril in sarcoplasm were not cleared, also degenerated from necrosis with phagocytosis. 2. The numbers of nuclear were much increased and accumulation of nuclear were finded, and relatively muscular atrophic changed. 3. Increased inflammatory cyte, also finded neutrophil and macrophage. 4. Relatively atrophic changed from severe fibrosis by incleased connectivetissue. 5. The glycogen granules were much decreased in E. S. T group. It means that electrical stimulation effected the muscle exercise. 6, The activity of the NADH-TR reaction of E. S. T. Tgroup were white muscle group are transformed into red muscle fiber than normal group. 7. These results indicate that the electrical stimulation effected to soleus also prevention and delayed muscular atrophy.

  • PDF

Effects of Glucuronic Acid Derivertives Isolated from Xylan an Antioxidative Defense System and Muscle Fatigue Recovery after Aerobic Exercise (Xylan으로부터 단리한 Glucuronic Acid의 유산소 운동 후 항산화 작총 및 근피로 회복효과)

  • 최향미;이수천;류승필;이인구;주길재;이순재
    • Journal of Nutrition and Health
    • /
    • v.34 no.8
    • /
    • pp.872-880
    • /
    • 2001
  • The purpose of this study was to investigate the effects of glucuronic acid on antioxidative defense system and recovery of muscle fatigue in rat artier aerobic exercise. Sprague-Dawley male rats weighing 150 $\pm$ 10g were randomly assigned to one normal(N) group and three exercise training groups. Exercise training groups were classified into glucuronic acid free intubation group(T group), 250mg glucuronic acid/kg bw intubation group(TU group), and 500 mg glucuronic acid/kg bw intubation group(2TU group) according to glucuronic acid supplementation level. The glucuronic acids were administered to rats by oral intubation before exercise training. The experimental rats in exercise training groups(T, TU and 2TU) were exercised on glucuronic acid supplementation or rats in normal group were confined in cage for 4 weeks. And rats were sacrificed with an overdose of pentobarbital injection just after running. Liver xanthine oxidase(XOD) activities were not significantly different among four groups. The activity of superoxide dismutase(SOD) in T group was no significant difference from N group, but those of TU and 2TU groups were increased by 9% and 18%, respectively, compared with that of T group. Liver glutathione peroxidase(GSHpx) activites of T and TU groups showed a similar tendency to that of normal group, but increase 17% in 2TU group compared with normal group. The ratio of GSH/GSSG in liver of T group was lower than that of normal group, but those of TU and 2TU groups were a similar tendency to that of normal group. Contents of thiobarbituric acid reactive substance(TBARS) in T group was increased by 47%, compared with that of normal group but those of TU group and 2TU group were lower 27% and 35%, respectively, compared with that of T group. The contents of glycogen in soleus muscle significantly lower in all three trained exercise groups than that of normal group, but there were no significant differences among the trained exercise groups. Contents of hepatic glycogen in T group were decreased 27% compared with those of normal group while those of TU and 2TU groups were the same as normal group levels. The contents of serum lactic acid in T group were increased 240% of normal group, but hose of TU and 2TU groups were decreased 38%, 39%, respectively, by glucuronic acid supplementations, compared with that of T group. In conclusion, the effects of glucuronic acids in exercise training rats would appear to reduce peroxidation of tissue as an antioxidative defense mechanism and promote recovery of muscle fatigue.

  • PDF