• Title/Summary/Keyword: Muscle fibers

Search Result 316, Processing Time 0.039 seconds

MARS-PD: Meridian Activation Remedy System for Parkinson's Disease

  • Miso S. Park;Chan-young Kim;In-woo Choi;In-cheol Chae;Wangjung Hur;SangSoo Park;Horyong Yoo
    • The Journal of Internal Korean Medicine
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Objective: There are currently no disease-modifying medications or definite long-term sustainable interventions for patients with Parkinson's disease (PD), indicating an unmet treatment need. Our goal was to create a long-term sustainable intervention for PD patients that can be used in Korean medicine clinics. Methods: The Meridian Activation Remedy System (MARS) was created to stimulate a patient's 12 meridians and sinew channels using a combination of acupoint stimulation and exercise. The acupoints and motions used in MARS were selected through literature studies and expert advice. The methodologies were refined using observational and case studies. With slow and fast movements, the MARS intervention was intended to activate both slow- and fast-twitch muscle fibers. Intradermal acupuncture and motion that shift the center of gravity were employed to enhance the patient's balance and proprioception. In addition, the intervention included alternating movement exercises to address the complex cognitive decline commonly occurring in PD patients. Results: The following acupoints were chosen for the MARS intervention: bilateral Hegu (LI4), Houxi (SI3), Waiguan (TE5), Neiguan (PC6), Zhongchong (PC9), Yuji (LU10), Zusanli (ST36), Yanglingquan (GB34), Taichong (LR3), Kunlun (BL60), and Taixi (KI3). We also developed actions that can stimulate the body's 12 meridians. Conclusion: We developed the MARS intervention, which combines acupuncture and exercise, to address the unmet therapeutic needs of PD patients. We hope that with additional research, the MARS intervention can be set as an effective therapeutic program for PD patients.

Sage (Salvia officinalis) alleviates trazadone induced rat cardiotoxicity mediated via modulation of autophagy and oxidative stress

  • Marwa Abdel-Samad Al-Gholam;Heba Moustafa Rasheed Hathout;Marwa Mohamed Safwat;Asmaa Saeed Essawy
    • Anatomy and Cell Biology
    • /
    • v.57 no.2
    • /
    • pp.256-270
    • /
    • 2024
  • The antidepressant drug trazodone (TRZ) is commonly used for treating depression, anxiety, and insomnia, however, it causes cardiotoxicity, which is one of its limitations. The objective of this work was to investigate the impact of sage (Salvia officinalis) in rats against cardiotoxicity induced by TRZ and to investigate the mechanisms involved in its cardio-protective properties through autophagy and oxidative stress. Fifty male albino rats were split randomly into five experimental groups: control group, sage oil group (100 mg/kg), TRZ group (20 mg/kg), protective group, and curative group. Cardiac function biomarkers (aspartate aminotransferase [AST], creatine kinase-MB [CK-MB], and cardiac troponin T [cTnI]) were assessed in serum. Oxidative stress and inflammatory biomarkers in cardiac tissue (total antioxidant capacity, malondialdehyde, and tumor necrosis factor-α) were evaluated. Heart tissues were subjected to histological, immunohistochemical, and ultrastructural evaluations. DNA damage also evaluated. Significant rise in the levels of AST, CK-MB, and cTnI were observed with enhanced autophagy along with marked histopathological changes in the form of interrupted muscle fibers with wide interstitial spaces with areas of hemorrhage and extravasated blood and interstitial mononuclear cellular infiltration in TRZ group. DNA damage was also significantly increased in TRZ group. However, administration of sage in both protective and curative groups show marked improvement of the cardiac alterations. In conclusion, sage ameliorated the alterations in the heart induced by trazadone through modulation of autophagy and oxidative stress.

Comparative Study of the Protective Effects of Citral, Thymoquinone, and Silymarin on Methotrexate-induced Cardiotoxicity in Rats

  • Barzan Behdokht;Noorbakhsh Mohammad Foad;Nazifi Saeed;Nasrollah Ahmadi;Amani Sakineh
    • Journal of Pharmacopuncture
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2024
  • Objectives: Methotrexate (MTX), an immunosuppressant and anti-cancer medication, can harm the heart. The goal of the current investigation was to assess the cardiotoxicity caused by MTX and the potential cardioprotective properties of silymarin, citral, and thymoquinone as antioxidants. Methods: Forty-eight rats were divided into six groups, which included control, MTX, cosolvent, citral, thymoquinone, and silymarin groups. At the end of the study, the rats were anesthetized (ketamine and xylazine) and killed using CO2. Their blood samples were collected to measure the enzymatic activities of creatine kinase-myoglobin binding (CK-MB), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH). Also, the heart tissue was sampled to determine the antioxidant capacity and examine the histopathology. Results: The findings revealed that the activity of CPK, CK-MB, and LDH enzymes significantly reduced in the thymoquinone treatment group compared to the MTX group (p < 0.05). On the other hand, total antioxidant capacity was significantly increased in the thymoquinone group compared to the MTX group (p < 0.05). The pathological modifications (i.e. severe congestion, edema fluid, the presence of inflammatory cells around the blood vessels, mild to moderate hemorrhaging between cardiac muscle fibers) were seen in the MTX group. The treatment groups, particularly thymoquinone, did not experience any appreciable pathological changes. Conclusion: The thymoquinone was found to have the strongest protective effect against the heart damage caused by MTX.

Transcriptome Analysis of Longissimus Tissue in Fetal Growth Stages of Hanwoo (Korean Native Cattle) with Focus on Muscle Growth and Development (한우 태아기 6, 9개월령 등심 조직의 전사체 분석을 통한 근생성 및 지방생성 관여 유전자 발굴)

  • Jeong, Taejoon;Chung, Ki-Yong;Park, Woncheol;Son, Ju-Hwan;Park, Jong-Eun;Chai, Han-Ha;Kwon, Eung-Gi;Ahn, Jun-Sang;Park, Mi-Rim;Lee, Jiwoong;Lim, Dajeong
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.45-57
    • /
    • 2020
  • The prenatal period in livestock animals is crucial for meat production because net increase in the number of muscle fibers is finished before birth. However, there is no study on the growth and development mechanism of muscles in Hanwoo during this period. Therefore, to find candidate genes involved in muscle growth and development during this period in Hanwoo, mRNA expression data of longissimus in Hanwoo at 6 and 9 months post-conceptional age (MPA) were analyzed. We independently identified differentially expressed genes (DEGs) using DESeq2 and edgeR which are R software packages, and considered the overlaps of the results as final-DEGs to use in downstream analysis. The DEGs were classified into several modules using WGCNA then the modules' functions were analyzed to identify modules which involved in myogenesis and adipogenesis. Finally, the hub genes which had the highest WGCNA module membership among the top 10% genes of the STRING network maximal clique centrality were identified. 913(6 MPA specific DEGs) and 233(9 MPA specific DEGs) DEGs were figured out, and these were classified into five and two modules, respectively. Two of the identified modules'(one was in 6, and another was in 9 MPA specific modules) functions was found to be related to myogenesis and adipogenesis. One of the hub genes belonging to the 6 MPA specific module was axin1 (AXIN1) which is known as an inhibitor of Wnt signaling pathway, another was succinate-CoA ligase ADP-forming beta subunit (SUCLA2) which is known as a crucial component of citrate cycle.

Gametogenesis and Reproductive Cycle of the Cockle, Fulvia mutica (Reeve) (새조개, Fulvia mutica (Reeve)의 생식세포형성과정 및 생식주기)

  • CHANG Young Jin;LEE Taek Yuil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.241-250
    • /
    • 1982
  • The structure of gonads, gametogenesis and reproductive cycle of the cockle, Fulvia mutice, were studied mainly by histological observation. The materials were monthly sampled in the southern area of Yeosu from October 1980 to September 1981. F. mutica was monoecious. The gonads were situated between the liver tissues and the outer fibronuscular layers compacted by the connective tissue fibers and muscle fibers beneath the outermost layer of simple cuboidal epithelium. The gonad was composed of a number of the ovarian sacs and the testicular tubules which form the tubular structure. Testicular tubules in the mature stage sometimes contained 'testis-ova' The undifferentiated mesenchymal tissues and the eosinophilic cells were abundantly distributed on the germinal epithelium in the early development stage. With the further development of the ovary and testis, these tissues and cells gradually disapprared. The undifferentiated mesenchymal tissues and the eosinophilic cells are related to the growing of the oocytes and spermatocytes . Early multiplicating oogonium was about $10{\mu}m$ in diameter. As the oocytes grow to $27-34\times50-58{\mu}m$ by increasing cytoplasm, the oocytes connected to the basement membrane by their egg-stalks. The ripe eggs were about $60{\mu}m$ in diameter and they were surrounded by gelatinous membrane. Most male germ cells in mature stage were transformed into the spermatozoa and they formed the sperm bundles. After spawning, undischarged ripe eggs and spermatozoa remained in the ovarian sac and the testicular tubule respectively for some time, then they finally degenerated. Especially the early spent ovarian sacs in May did not contract significantly and then they took part in the secondary maturation within two or three months during the summer season. The monthly changes of the fatness well agreed with the reproductive cycle. The reproductive cycle of F. mutica could be classified into six successive stages : multiplicative, growing, mature, spent, degenerative and recovery stage. It seems that the spawning season is closely rotated to the water temperature, and the spawning occurs from May to October at about $20^{\circ}C$ in water temperature. The peak spawning seasons appeared twice a year between June and July and in September. Acknowledgement The authors wish to express their gratitude to Dr. Kim, In Bae, Dr. Chun, Seh Kyu and Dr. Yoo, Sung Kyoo of National Fisheries University of Busan and Mr. Min, Byoung Seo of National fisheries Research and Development Agency for their critical reading of the manu script.

  • PDF

PERIPHERAL NERVE REGENERATION USING A THREE-DIMENSIONALLY CULTURED SCHWANN CELL CONDUIT (삼차원 배양된 슈반세포 도관을 이용한 말초 신경 재생)

  • Kim, Soung-Min;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.1
    • /
    • pp.1-16
    • /
    • 2004
  • The use of artificial nerve conduit containing viable Schwann cells is one of the most promising strategies to repair the peripheral nerve injury. To fabricate an effective nerve conduit whose microstructure and internal environment are more favorable in the nerve regeneration than existing ones, a new three-dimensional Schwann cell culture technique using $Matrigel^{(R)}$. and dorsal root ganglion (DRG) was developed. Nerve conduit of three-dimensionally arranged Schwann cells was fabricated using direct seeding of freshly harvested DRG into a $Matrigel^{(R)}$ filled silicone tube (I.D. 1.98 mm, 14 mm length) and in vitro rafting culture for 2 weeks. The nerve regeneration efficacy of three-dimensionally cultured Schwann cell conduit (3D conduit group, n=6) was assessed using SD rat sciatic nerve defect of 10 mm, and compared with that of silicone conduit filled with $Matrigel^{(R)}$ and Schwann cells prepared from the conventional plain culture method (2D conduit group, n=6). After 12 weeks, sciatic function was evaluated with sciatic function index (SFI) and gait analysis, and histomorphology of nerve conduit and the innervated tissues of sciatic nerve were examined using image analyzer and electromicroscopic methods. The SFI and ankle stance angle (ASA) in the functional evaluation were $-60.1{\pm}13.9$, $37.9^{\circ}{\pm}5.4^{\circ}$ in 3D conduit group (n=5) and $-87.0{\pm}12.9$, $32.2^{\circ}{\pm}4.8^{\circ}$ in 2D conduit group (n=4), respectively. And the myelinated axon was $44.91%{\pm}0.13%$ in 3D conduit group and $13.05%{\pm}1.95%$ in 2D conduit group to the sham group. In the TEM study, 3D conduit group showed more abundant myelinated nerve fibers with well organized and thickened extracellular collagen than 2D conduit group, and gastrocnemius muscle and biceps femoris tendon in 3D conduit group were less atrophied and showed decreased fibrosis with less fatty infiltration than 2D conduit group. In conclusion, new three-dimensional Schwann cell culture technique was established, and nerve conduit fabricated using this technique showed much improved nerve regeneration capacity than the silicone tube filled with $Matrigel^{(R)}$ and Schwann cells prepared from the conventional plain culture method.

Evaluation for Biocompatibility of Gentamicin-collagen Sponge on the Experimental Animal Wound Model (실험동물 창상 모델에서 겐타마이신 함유 콜라겐 스폰지의 생체적합성 평가)

  • Yun, Sung-Ho;Park, Jihee;Park, Jeongkyu;Kim, Manseop;Kim, Dalwon;Song, Moon-Yong;Kang, Gyoo-Il;Hwang, Won-Koo;Ku, Sae-Kwang;Jang, Kwang-Ho;Kwon, Young-Sam
    • Journal of Veterinary Clinics
    • /
    • v.32 no.5
    • /
    • pp.404-409
    • /
    • 2015
  • The objective of this study was to compare the biocompatibility for local irritation and bioavailability of $Gentacol^{TM}$ and $Collatamp^{TM}$, after single intramuscular loading in rats. Sixty-six male Sprague-Dawley rats were divided into 4 groups; (1) any test materials were not applied into the quadriceps muscles (control group, N = 6), (2) Gentamicin was injected into the quadriceps muscles (Gentamicin group, N = 6), (3) Collatamp was applied into the quadriceps muscles (Collatamp group, N = 27), and (4) Gentacol was applied into the quadriceps muscles (Gentacol group, N = 27). The concentration of gentamicin in muscles was gradually decreased with time after loaded in the both $Gentacol^{TM}$ and $Collatamp^{TM}$ loaded regions. No detectable gentamicin was observed in the plasma of $Gentacol^{TM}$ and $Collatamp^{TM}$ loaded rats. Histologically, moderate to severe inflammatory cell infiltrations including PMN, lymphoid cells and macrophages were observed with slight to moderate edematous changes of muscle fibers after intramuscular injection of gentamicin. However, these histopathological changes of gentamicin injection induced local irritations were dramatically decreases after intramuscular loading of $Collatamp^{TM}$ and $Gentacol^{TM}$. These results suggest $Gentacol^{TM}$ may show favorable local bioavailability and induce only slight local irritations as comparable as $Collatamp^{TM}$ without systemic exposures in the condition of this experiment.

Preparation and Biocompatibility of Medical Fiber from Novel Regenerated Cellulose from Styela clava tunic (미더덕껍질의 재생셀룰로오스를 이용한 의료용 섬유의 제조 및 생체적합성)

  • Song, Sung Hwa;Kim, Ji Eun;Choi, Jun Young;Park, Jin Ju;Lee, Mi Rim;Song, Bo Ram;Lee, Yechan;Kim, Hong Sung;Lee, Jae Ho;Lim, Yong;Hwang, Dae Youn;Jung, Young Jin
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.117-129
    • /
    • 2018
  • Cellulose has been widely applied into various medical fields including scaffolding, tissue engineering and tissue formation. In this study, we manufactured cellulose medical fiber from Styela clava tunics(SCT-CS) and analyzed the tensile strength, elongation at break, fluid uptake and surface morphology. And then, the biocompatibility and toxicity of SCT-CS were measured in Sprague-Dawley(SD) rats after the implantation for 30, 60 and 90 days. The level of tensile strength and fluid uptake were lower in SCT-CS than chromic catgut(CCG), while elongation at break level were maintained the higher in SCT-CS. Also, the roughness with pronounced surface patterns as a result of in vivo degradation was significantly greater in CCG than this of SCT-CS although these levels gradually appeared with time in both groups. After implantation for 90 days, SCT-CS and CCG was successfully implanted around muscle of thigh without any significant immune response. Furthermore, no significant alterations were measured in serum parameters and the specific pathological features induced by most toxic compounds for liver and kidney toxicity. Therefore, these results suggest that SCT-CS showing good biocompatibility and non-toxicity can be successfully prepared from cellulose powder of SCT as well as has the potential for use as a powerful biomaterial for medical sutures.

STUDY ON EXPRESSION OF GLYCOSAMINOGLYCAN IN ADENOID CYSTIC CARCINOMA (선양낭성암종(Adenoid Cystic Carcinoma)에서의 Glycosaminoglycan의 발현에 관한 연구)

  • Son, Chang-Won;Kim, Kyung-Wook;Kim, Chul-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.271-281
    • /
    • 2004
  • Adenoid cystic carcinoma is malignant tumor in salivary gland, and its behavior is very invasive. Of all malignant tumor adenoid cystic carcinoma is occured in frequency of 4.4% in major salivary gland, and 1.29% in minor salivary gland. Histopathologically, adenoid cystic carcinoma is characterized by a cribriform appearance, and tubular form and solid nest type tumor can be seen. The tumor cell structure composed of modified myoepithelial cell, and basaloid cell. Extracellular matrix of this tumor cell contains variable ground substance with basement membrane component. Basement membrane matrix composed of collagen fibers, glycoproteins, proteoglycans, and its function is well known that it participate in differentiation, proliferation, and growth of tumor cell. Basement membrane molecule is essential for invasion of peripheral nerve, blood vessel, skeletal muscle in tumor cell of adenoid cystic carcinoma. In many studies, the tumor cell of adenoid cystic carcinoma containing modified myoepithelial cell participate in synthesis of proteoglycan. In this study, tissue sample of adenoid cystic carcinoma of human salivary gland were obtained from 15 surgical specimen, and all specimen were routinely fixed in 10% formalin and embedded. Serial $4-{\mu}m$ thick sections were cut from paraffin blocks. the histopathologic evaluation was done with light microscopy. And, the immunohistochemical staining, characteristics of glycosaminoglycan were observed. For biochemical analysis of glycosaminoglycan, isolation of crude glycosaminoglycan from tumor tissue and Western bolt analysis were carried out. With transmission electomicroscopy, tumor cell were observed. Biologic behavior of adenoid cystic carcinoma was observed with distribution and expression of basement membrane of glycosaminoglycan in tumor cells, The results obtained were as follows: 1. In immunohistochemical study, chondroitin sulfate is postively stained in tumor cell and interstitial space, dermatan sulfate is weakly stained in ductal cell. But keratan sulfate is negatively stained. 2. In immunohistochemical study, heparan sulfate is strong positive stained in tumor cell and basement membrane, especially in invasion area to peripheral nerve tissue. 3. In transmission electromicroscpic view, the tumor cells are composed modifed myoepithelial cells, and contains many microvilli and rough endoplasmic reticulum. 4. In Western blot analysis, the expression of glycosaminoglycan is expressed mostly in heparan sulfate. From the results obtained in this study, tumor cell of adenoid cystic carcinoma is composed modified myoepithelial cell, and glycosaminoglycan of basement membrane molecule of heparan sulfate and chondroitin sulfate mostly participate in the development and invasiveness of adenoid cystic carcinoma by immunohistochemical study and western blot analysis.

Morphology and Histology of the Digestive Organ in the Sablefish, Anoplopoma fimbria (Teleostei: Anoplopomatidae) (은대구, Anoplopoma fimbria 소화기관의 형태 및 조직학적 특징)

  • Kim, Suji;Kang, Ju Chan;Lee, Jung Sick
    • Korean Journal of Ichthyology
    • /
    • v.28 no.1
    • /
    • pp.19-27
    • /
    • 2016
  • The RLG (relative length of gut) is 1.52 (n=12) in the sablefish, Anoplopoma fimbria. The digestive tract has five or six pyloric caeca in the posterior region of stomach. Morphology of mucosal fold is unbranched type in the esophagus and stomach, but branched type in the intestine. The histological structure of digestive tract can be divided into mucosal layer, submucosal layer, muscular layer and serous membrane in the cross section. In the esophagus, mucosal epithelial layer is a simple, and consists of ciliated columnar epithelia and mucous cells. In the stomach, gastric gland of mucosal epithelial layer is a tubular, and is composed of chief cell, parietal cell and mucin secreting cell, which is columnar and contained secretory granules of red and blue colors in the AB-PAS (pH 2.5) reaction. In the intestine, mucosal epithelial layer is a simple, and consists of ciliated columnar epithelia and goblet cells. The submucosal layer is composed mainly of collagen fibers, and well developed in the esophagus. And the muscular layer of digestive tract is divided into longitudinal and circular muscle layer, and well developed in the stomach. The liver is composed of numerous lobular structure and bile canaliculi. Stainability of hepatocyte cytoplasm was eosinophilic, and nucleus and nucleolus showed basophilic in the H-E stain. The pancreatic tissue was scattered in the fatty tissue near the digestive tract, and acinar gland consisting of numerous exocrine cells. And cytoplasmic stainability of exocrine cell was basophilic, and contained numerous zymogen granules of eosinophilic in the H-E stain.