PERIPHERAL NERVE REGENERATION USING A THREE-DIMENSIONALLY CULTURED SCHWANN CELL CONDUIT

삼차원 배양된 슈반세포 도관을 이용한 말초 신경 재생

  • Kim, Soung-Min (Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University) ;
  • Lee, Jong-Ho (Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University)
  • 김성민 (서울대학교 치과대학 구강악안면외과학교실) ;
  • 이종호 (서울대학교 치과대학 구강악안면외과학교실)
  • Published : 2004.02.28

Abstract

The use of artificial nerve conduit containing viable Schwann cells is one of the most promising strategies to repair the peripheral nerve injury. To fabricate an effective nerve conduit whose microstructure and internal environment are more favorable in the nerve regeneration than existing ones, a new three-dimensional Schwann cell culture technique using $Matrigel^{(R)}$. and dorsal root ganglion (DRG) was developed. Nerve conduit of three-dimensionally arranged Schwann cells was fabricated using direct seeding of freshly harvested DRG into a $Matrigel^{(R)}$ filled silicone tube (I.D. 1.98 mm, 14 mm length) and in vitro rafting culture for 2 weeks. The nerve regeneration efficacy of three-dimensionally cultured Schwann cell conduit (3D conduit group, n=6) was assessed using SD rat sciatic nerve defect of 10 mm, and compared with that of silicone conduit filled with $Matrigel^{(R)}$ and Schwann cells prepared from the conventional plain culture method (2D conduit group, n=6). After 12 weeks, sciatic function was evaluated with sciatic function index (SFI) and gait analysis, and histomorphology of nerve conduit and the innervated tissues of sciatic nerve were examined using image analyzer and electromicroscopic methods. The SFI and ankle stance angle (ASA) in the functional evaluation were $-60.1{\pm}13.9$, $37.9^{\circ}{\pm}5.4^{\circ}$ in 3D conduit group (n=5) and $-87.0{\pm}12.9$, $32.2^{\circ}{\pm}4.8^{\circ}$ in 2D conduit group (n=4), respectively. And the myelinated axon was $44.91%{\pm}0.13%$ in 3D conduit group and $13.05%{\pm}1.95%$ in 2D conduit group to the sham group. In the TEM study, 3D conduit group showed more abundant myelinated nerve fibers with well organized and thickened extracellular collagen than 2D conduit group, and gastrocnemius muscle and biceps femoris tendon in 3D conduit group were less atrophied and showed decreased fibrosis with less fatty infiltration than 2D conduit group. In conclusion, new three-dimensional Schwann cell culture technique was established, and nerve conduit fabricated using this technique showed much improved nerve regeneration capacity than the silicone tube filled with $Matrigel^{(R)}$ and Schwann cells prepared from the conventional plain culture method.

Keywords

References

  1. Hadlock TA, Sundback CA, Hunter DA, Vacanti JP, Cheney ML. A new artificial nerve graft containing rolled schwann cell monolayers. Microsurg 2001;21:96-101 https://doi.org/10.1002/micr.1016
  2. Bryan DJ, Wang KK, Chakalis-Haley DP. Effect of schwann cells in the enhancement of peripheral-nerve regeneration. J Reconstr Microsurg 1996;12:439-446 https://doi.org/10.1055/s-2007-1006616
  3. Tseng CY, Hu G, Ambron RT, Chiu DT. Histologic analysis of Schwann cell migration and peripheral nerve regeneration in the autogenous venous nerve conduit (ANVC). J Reconstr Microsurg 2003;19:331-340 https://doi.org/10.1055/s-2003-42502
  4. Koshimune M, Takamatsu K, Nakatsuka H, Inui K, Yamano Y, Ikada Y. Creating bioabsorbable Schwann cell coated conduits through tissue engineering. Biomed Mater Eng 2003;13:223-229
  5. Lundborg G, Rosen B, Dahlin L, Danielsen N, Holmberg J. Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a perspective, randomized, clinical study. J Hand Surg 1997;22A:99-106
  6. Den-Dunnen WF, van der Lei B, Robinson PH, Holwerda A, Pennings AJ, Schakenraad JM. Biological performance of a degradable poly-(lactic acid-epsilon-caprolactone) nerve guide: influence of tube dimensions. J Biomed Mater Res 1995;29:757-766 https://doi.org/10.1002/jbm.820290612
  7. Doolabh VB, Herd CM, Mackinnon SE. The role of conduits in nerve repair: a review. Rev Neurosci 1996;7:47-84
  8. Shen ZL, Lassner F, Becker M, Walter GF, Bader A, Berger A. Viability of cultured nerve grafts: An assessment of proliferation of Schwann cells and fibroblasts. Microsurg 1999;19:356-363 https://doi.org/10.1002/(SICI)1098-2752(1999)19:8<356::AID-MICR2>3.0.CO;2-N
  9. Lundborg G. Nerve regeneration: the nerve chamber as an experimental tool. In: Lundborg G, editor. Nerve injury and repair. New York: Churchill Livingstone; 1988. p 163-178
  10. Levi ADO, Sonntag VKH, Dickman C, et al. The role of cultured Schwann cell grafts in the repair of gaps within the peripheral nervous system of primates. Exp Neurol 1997;143:25-36 https://doi.org/10.1006/exnr.1996.6344
  11. Shen ZL, Berger A, Hierner R, Allmeling C, Ungewickell E, Walter GF. A Schwann cell-seeded intrinsic framework and its satisfactory biocompatibility for a bioartificial nerve graft. Microsurg 2001;21:6-11 https://doi.org/10.1002/1098-2752(2001)21:1<6::AID-MICR1001>3.0.CO;2-6
  12. Kim SM, Lee JH, Kim NY, Ahn KM, Choi WJ, Choi SH, Cha MJ, Lee JY, Hwang SJ, Jahng JW, Myoung H, Choi JY, Seo BM, Choung PH, Kim MJ. Improved protocol for schwann cell isolation and proliferation from rat dorsal root ganglia in vitro. J Korean Academy Maxillofac Reconstruc Surg 2003;25:265-272
  13. Kim SM, Lee JH. The most appropriate antimitotic treatment of Ara-C in Schwann cell-enriched culture from dorsal root ganglia of new born rat. J Korean Associat Oral Maxillofac Surgeons 2004;30:(in press).
  14. Freshney RI. Culture of animal cells; a manual of basic technique. 2000. fourth ed. Wiley-Liss Inc 9-18, 89-104
  15. Mosahebi A, Wiberg M, Terenghi G. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng 2003;9:209-218 https://doi.org/10.1089/107632703764664684
  16. Evans GRD, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG, Patrick CW. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials 2002;23:841-848 https://doi.org/10.1016/S0142-9612(01)00190-9
  17. Toriumi DM, Woolford TJ. Teitlebaum B. Growth factors in nerve regeneration. Fac Plas Surg Clin Nor Am. 1995;3:287-300
  18. Ahmed Z, Underwood S, Brown RA. Nerve guide material made from fibronectin: assessment of in vitro properties. Tissue Eng 2003;9:219-231 https://doi.org/10.1089/107632703764664693
  19. Terris DJ, Cheng ET, Utley DS, Tarn DM, Ho PR, Verity AN. Functional recovery following nerve injury and repair by silicon tubulization: comparison of laminin-fibronectin, dialyzed plasma, collagen gel, and phosphate buffered solution. Auris Nasus Larynx 1999;26:117-122 https://doi.org/10.1016/S0385-8146(98)00067-4
  20. Wingerd BD. The nervous system, in: Rat dissection manual. The Johns Hopkins University Press, 32-40, 1988
  21. Yeh LS, Gregory CR, Theriault BR, Hou SM, Lecouter RA. A functional model for whole limb transplantation in the rat. Plast Reconstr Surg 2000;105:1704-1711 https://doi.org/10.1097/00006534-200004050-00016
  22. De Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol 1982;77:634-643 https://doi.org/10.1016/0014-4886(82)90234-5
  23. Dijkstra JR, Meek MF, Robinson PH, Gramsbergen A. Methods to evaluate functional nerve recovery in adult rats: walking track analysis, video analysis and the withdrawal reflex. J Neurosci Methods 2000;96:89-96 https://doi.org/10.1016/S0165-0270(99)00174-0
  24. Varejao ASP, Cabrita AM, Patricio JA, Bulas-Cruz J, Gabriel RC, Melo-Pinto P, Couto PA, Meek MF. Functional assessment of peripheral nerve recovery in the rat:gait kinematics. Microsurg 2001;21:383-388 https://doi.org/10.1002/micr.21803
  25. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 1989;83:129-136 https://doi.org/10.1097/00006534-198901000-00024
  26. Kluver H, Barrera E. A method for the combined staining of cells and fibers in the central nervous system. J Neoupathol Exp Neurol 1953;12:400-403 https://doi.org/10.1097/00005072-195312040-00008
  27. Clasen RA, Simon RG, Scott R, Pandolfi S, Laing I, Lesak A. The staining of the myelin sheath by Luxol dye techniques. J Neuropathol Exp Neurol 1973;32:271-283 https://doi.org/10.1097/00005072-197304000-00007
  28. Heijke GCM, Klopper PJ, Baljet B, Van Doorn IB, Dutrieux RP. Method for morphometric analysis of axons in experimental peripheral nerve reconstruction. Microsurg 2000;20:225-232 https://doi.org/10.1002/1098-2752(2000)20:5<225::AID-MICR3>3.0.CO;2-S
  29. Levi ADO. Characterization of the technique involved in isolating Schwann cells from adult human peripheral nerve. J Neurosci Meth 1996;68:21-26 https://doi.org/10.1016/0165-0270(96)00055-6
  30. Masahebi A, Fuller P, Wiberg M, Terenghi G. Effect of allogenic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol 2002;173:213-223 https://doi.org/10.1006/exnr.2001.7846
  31. Mirsky R, Jessen KR, Brennan A, Parkinson D, Dong Z, Meier C, Parmantier E, Lawson D. Schwann cells as regulators of nerve development. J Physiology-Paris 2002;96:17-24 https://doi.org/10.1016/S0928-4257(01)00076-6
  32. Kioussi C, Gruss P. Making of a Schwann. Trends Genet 1996;12:84-86 https://doi.org/10.1016/0168-9525(96)81411-9
  33. Labrador RO, Buti M, Navarro X. Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair. Exp Neurol 1998;149:243-252 https://doi.org/10.1006/exnr.1997.6650
  34. Shamash S, Reichert F, Rotshenker S. The cytokine network of wallerian degeneration: Tumor necrosis factor-$\alpha$, Interleukin-1$\alpha$, and Interleukin-1$\beta$. J Neuroscience. 2002;22:3052-3060.
  35. Cassell OC, Morrison WA, Messina A, Penington AJ, Thompson EW, Stevens GW, Perera JM, Kleinman HK, Hurley JV, Romeo R, Knight KR. The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue. Ann N Y Acad Sci 2001;944:429-442 https://doi.org/10.1111/j.1749-6632.2001.tb03853.x
  36. Kleinman HK, Philp D, Hoffman MP. Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 2003;14:526-532 https://doi.org/10.1016/j.copbio.2003.08.002
  37. Dityatev A, Schachner M. Extracellular matrix molecules and synaptic plasticity. Nature Rev Neurosci 2003;4:456-468 https://doi.org/10.1038/nrn1115
  38. Benes FM, Lange N. Two-dimensional versus three-dimensional cell counting: a practical perspective. Trends Neurosci 2001;24:11-17 https://doi.org/10.1016/S0166-2236(00)01660-X
  39. Williams RW, Rakic P. Three-dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J Comp Neurol 1988;278:344-352
  40. Lopez TJ, De Vries GH. Isolation and serum-free culture of primary Schwann cells from human fetal peripheral nerve. Exp Neurol 1999;158;1-8 https://doi.org/10.1006/exnr.1999.7081
  41. Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health and disease. Trends Neurosci 2001;24:39-47
  42. Garbay B. Myelin synthesis in the peripheral nervous system. Prog Neurobiol 2000;61:267-304 https://doi.org/10.1016/S0301-0082(99)00049-0
  43. Notterpek L. Neurotrophins in myelination: a new role for a puzzling receptor. Trends Neurosci 2003;26:232-234 https://doi.org/10.1016/S0166-2236(03)00099-7
  44. Ferguson KL, Slack RS. Growth factors: can they promote neurogenesis? Trends Neurosci 2003;26:283-285 https://doi.org/10.1016/S0166-2236(03)00100-0
  45. Luk HW, Noble LJ, Werb Z. Macrophages contribute to the maintenance of stable regenerating neurites following peripheral nerve injury. J Neurosci Research 2003;73:644-658 https://doi.org/10.1002/jnr.10701
  46. McQuillan W. The use of nerve isolation. Hand 1970;2:19-20 https://doi.org/10.1016/0072-968X(70)90030-6
  47. Coleman DJ, Sharpe DT, Taylor IL, Chander CL, Cross SE. The role of the contractile fibroblast in the capsules around tissue expanders and implants. Br J Plast Surg 1993;46:547-556 https://doi.org/10.1016/0007-1226(93)90104-J
  48. Meyer RS, Abrams RA, Botte MJ, Davey JP, Bodine-Fowler SC. Functional recovery following neurorrhaphy of the rat sciatic nerve by epineurial repair compared with tubulization. J Orthop Res 1997;5:664-669
  49. Chamberlain LJ, Yannas IV, Arrizabalaga A, Hsu H-P, Norregaard TV, Spector M. Early peripheral nerve healing in collagen and silicon tube implants:myofibroblasts and the cellular respons. Biomaterials 1998;19:1393-1403 https://doi.org/10.1016/S0142-9612(98)00018-0
  50. Varejao ASP, Cabrita AM, Meek MF, Geuna S, Patricio JA, Azevedo HR, Ferreira AJ, Meek MF. Functional assessment of sciatic nerve recovery: biodegradable poly(DLLA-$\varepsilon$-CL) nerve guide filled with fresh skeletal muscle. Microsurg 2003;23:346-353 https://doi.org/10.1002/micr.10148
  51. Meek MF, Dunnen WFA, Schakenraad JM, Robinson PH. Evaluation of several techniques to modify denatured muscle tissue to obtain a scaffold for peripheral nerve regeneration. Biomaterials 1999;20:401-408 https://doi.org/10.1016/S0142-9612(98)00178-1
  52. Puigdellivol-Sanchez A, Forcada-Calvet P, Prats-Galino A, Molander C. Contribution of femoral and proximal sciatic nerve branches to the sensory innervation of hindlimb digits in the rat. Anat Rec 2000;260:180-188 https://doi.org/10.1002/1097-0185(20001001)260:2<180::AID-AR70>3.0.CO;2-E
  53. Yongbo Li, Hsieh ST, Chien HF, Zhang X, McArthur JC, Griffin JW. Sensory and motor denervation influence epidermal thickness in rat foot glabrous skin. Exp Neurol 1997;147:452-462 https://doi.org/10.1006/exnr.1997.6624
  54. Lee JH, Hwang SJ, Choi WJ, Kim SM, Kim NY, Ahn KM, Myung H, Seo BM, Choi JY, Choung PH, Kim MJ, Kim HM, Park KP, Kim JS. Development of microporous calcium phosphate coated nerve conduit for peripheral nerve repair. J Korean Associat Oral Maxillofac Surgeons 2003;29:151-156
  55. Valenti RF, Aebischer P. Strategies for the engineering of peripheral nervous tissue regeneration, in Lanza RP, Langer R, Chick WL.(eds): Principles of tissue engineering. Austin:Academic Press, 1997:678
  56. Dahlin LB, Lundborg G. Use of tubes in peripheral nerve repair. Neurosurg Clin N Am 2001;12:341-352
  57. Hadlock T, Elisseeff J, Langer R, Vacanti J, Cheney M. A tissue-engineered conduit for peripheral nerve repair. Arch Otolaryngol Head Neck Surg 1998;124:1081-1086 https://doi.org/10.1001/archotol.124.10.1081
  58. Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng 2000;6:119-127 https://doi.org/10.1089/107632700320748
  59. Bryan D, Holway A, Wang KK, Silva AE, Trantolo DJ, Wise D, Summerhayes I. Influence of glial growth factor and Schwann cells in a bioresorbable guidance channel on peripheral nerve regeneration. Tissue Eng 2000;6:129-138 https://doi.org/10.1089/107632700320757
  60. Yamada Y, Boo JS, Ozawa R, Nagasaka T, Okazaki Y, Hata K, Ueda M. Bone regeneration following injection of mesenchymal stem cells and fibrin glue with a biodegradable scaffold. J Cranio-Maxillfac Surg 2003;31:27-33 https://doi.org/10.1016/S1010-5182(02)00143-9
  61. de Vries J, Menovsky T, van Gulik S, Wesseling P. Histologic effects of fibrin glue on nervous tissue: A safety study in rats. Surg Neurol 2002;57:415-422 https://doi.org/10.1016/S0090-3019(02)00736-X
  62. Yin Q, Kemp GH, Yu LG, Wagstaff SC, Frostick SP. Neurotrophin-4 delivered by fibrin glue promotes peripheral nerve regeneration. Muscle Nerve 2001;24:345-351 https://doi.org/10.1002/1097-4598(200103)24:3<345::AID-MUS1004>3.0.CO;2-P
  63. Bain JR, Mackinnon SE, Hudson AR, Falk RE, Falk JA, Hunter RT. The peripheral nerve allograft: an assessment of regeneration across nerve allograft in rats immunosuppressed with Cyclosporin A. Plast Reconstruc Surg 1988;82:1052-1064 https://doi.org/10.1097/00006534-198812000-00019
  64. Feringa ER, Vahlsing HL. Immunologic consideration in nervous system repair, in FJ Seil.(eds): Nerve, organ and tissue regeneration: research perspectives. New York:Academic Press, 1983:171-192
  65. Lee JH, Hwang SJ, Ahn KM, Kim SM, Nam DW, Kim JH, Park YW, Kim NY, Jang JW, Lee SK. Dynamic evaluation of sciatic nerve function in animal model: video gait analysis. Abstracts in Congress of Korean Academy Maxillofac Reconstruc Surg Associat 2003;68,204
  66. Lin FM, Pan YC, Hom C, Sabbahi M, Shenaq S. Ankle stance angle: a functional index for the evaluation of sciatic nerve recovery after complete transection. J Reconstruc Microsurg 1996;12:173-177 https://doi.org/10.1055/s-2007-1006472
  67. Walker JL, Evans JM, Meade P, Resig P, Sisken BF. Gait-stance duration as a measure of injury and recovery in the rat sciatic nerve model. J Neurosci Methods 1994;52:47-52 https://doi.org/10.1016/0165-0270(94)90054-X