• Title/Summary/Keyword: Muscle Creatine

Search Result 138, Processing Time 0.026 seconds

Distal Myopathies (원위 근병증)

  • Lee, Dong Kuck
    • Annals of Clinical Neurophysiology
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The distal myopathies(DM) are clinically defined as inherited or sporadic primary muscle disorders characterized by progressive muscular weakness and atrophy beginning in the hands or feet and pathologically by myopathic changes in skeletal muscles. The pathologic changes are somewhat similar to those seen in chronic muscular dystrophy, but necrotic and regenerative processes are less prominent and creatine kinase levels are either normal or only mildly elevated. The most representative diseases are dominantly inherited Welander distal myopathy and tibial muscular dystrophy, and the recessively inherited distal myopathy with rimmed vacuoles and distal muscular dystrophy(Miyoshi myopathy). At present, further study is necessary to determine why rimmed vacuoles are so common in the DM, and what role they play in the pathogenesis of muscle fiber atrophy and loss, predominantly in the distal portions of the extremities.

  • PDF

The Effects of Protein and Supplements on Sarcopenia in Human Clinical Studies: How Older Adults Should Consume Protein and Supplements

  • Young Jin Jang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.143-150
    • /
    • 2023
  • Sarcopenia is a condition in which muscle mass, strength, and performance decrease with age. It is associated with chronic diseases such as diabetes, cardiovascular disease, and hypertension, and contributes to an increase in mortality. Because managing sarcopenia is critical for maintaining good health and quality of life for the elderly, the condition has sparked concern among many researchers. To counteract sarcopenia, intake of protein is an important factor, while a lack of either protein or vitamin D is a major cause of sarcopenia. In addition, essential amino acids, leucine, β-hydroxy β-methylbutyrate (HMB), creatine, and citrulline are used as supplements for muscle health and are suggested as alternatives for controlling sarcopenia. There are many studies on such proteins and supplements, but it is necessary to actually organize the types, amounts, and methods by which proteins and supplements should be consumed to inhibit sarcopenia. In this study, the efficacy of proteins and supplements for controlling sarcopenia according to human clinical studies is summarized to provide suggestions about how the elderly may consume proteins, amino acids, and other supplements.

Curcumin Alleviates Dystrophic Muscle Pathology in mdx Mice

  • Pan, Ying;Chen, Chen;Shen, Yue;Zhu, Chun-Hua;Wang, Gang;Wang, Xiao-Chun;Chen, Hua-Qun;Zhu, Min-Sheng
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.531-537
    • /
    • 2008
  • Abnormal activation of nuclear factor kappa B ($NF-{\kappa}B$) probably plays an important role in the pathogenesis of Duchenne's muscular dystrophy (DMD). In this report, we evaluated the efficacy of curcumin, a potent $NF-{\kappa}B$ inhibitor, in mdx mice, a mouse model of DMD. We found that it improved sarcolemmic integrity and enhanced muscle strength after intraperitoneal (i.p.) injection. Histological analysis revealed that the structural defects of myofibrils were reduced, and biochemical analysis showed that creatine kinase (CK) activity was decreased. We also found that levels of tumor necrosis factor alpha ($TNF-\alpha$), interleukin-1 beta ($IL-1\beta$) and inducible nitric oxide synthase (iNOS) in the mdx mice were decreased by curcumin administration. EMSA analysis showed that $NF-{\kappa}B$ activity was also inhibited. We thus conclude that curcumin is effective in the therapy of muscular dystrophy in mdx mice, and that the mechanism may involve inhibition of $NF-{\kappa}B$ activity. Since curcumin is a non-toxic compound derived from plants, we propose that it may be useful for DMD therapy.

The Effect of Dehydroepiandrosterone on Isoproterenol-induced Cardiomyopathy in Rats

  • Jeong, Ji-Hoon;Kim, Chan-Woong;Yim, Sung-Hyuk;Shin, Yong-Kyoo;Park, Kyung-Wha;Park, Eon-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.79-83
    • /
    • 2006
  • We evaluated therapeutic and preventive properties of dehydroepiandrosterone (DHEA), a weak androgenic steroid, against isoproterenol-induced cardiomyopathy. The cardiomyopathy was induced by daily i.p. administration of isoproterenol to rats for five days. One group of rats were given with daily s.c. for 5 days during isoproterenol and the other group with daily s.c. DHEA for total 10 days, including 5 days before and during isoproterenol. The animals were killed after each treatment, and cardiac muscle failure was evaluated using histopathologic examination and biochemical indices. DHEA was found to reduce the damaged area and inhibit the elevation in the serum levels of glutamic oxaloacetic transaminase (SGOT), lactate dehydrogenase (LDH), skeletal muscle creatine kinase (CK) and heart creatine kinase (CK-MB) induced by isoproterenol. We also assayed widely used oxidative stress parameters, including thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase and glutathion peroxidase (GPx). DHEA decreased the escalated level of TBARS and enhanced the anti oxidant defense reaction with an increase in Mn-SOD and Cu/Zn-SOD. On the other hand, the treatment with DHEA did not affect catalase and GPx activity. The present study indicates that DHEA has a therapeutic and preventive effect against isoproterenol-induced cardiomyopathy and its effects may depend largely on the increase in SOD activity.

Tests for Acute Coronary Syndrome (급성관동맥증후군 관련 검사)

  • Kim, Kyung-Dong
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.13-29
    • /
    • 2001
  • The enzyme activities of creatine kinase (CK), its isoenzyme MB (CK-MB) and of lactate dehydrogenase isoenzyme 1 (LD-1) have been used for years in diagnosing patients with chest pain in order to differentiate patients with acute myocardial infarction (AMI) from non-AMI patients. These methods are easy to perform as automated analyses, but they are not specific for cardiac muscle damage. During the early 90's the situation changed. First, creatine kinase ME mass (CK-MB mass) replaced the measurement of CK-MB activity. Subsequently cardiac-specific proteins, troponin T (cTnT) and troponin I (cTnI) appeared and displacing LD-1 analysis. However, troponin concentrations in blood increase only from four to six hours after onset of chest pain. Therefore a rapid marker such as myoglobin, fatty acid binding protein or glycogen phosphorylase BB could be used in early diagnosis of AMI. On the other hand, CK-MB isoforms alone may also be useful in rapid diagnosis of cardiac muscle damage. Myoglobin, CK-MB mass, cTnT and cTnI are nowadays widely used in diagnosing patients with acute chest pain. Myoglobin is not cardiac-specific and therefore requires supplementation with some other analyses such as troponins to support the myoglobin value. Troponins are very highly cardiac-specific. Only the sera of some patients with severe renal failure, which requires hemodialysis, have elevated cTnT and/or cTnI without there being any evidence of cardiac damage. The latest studies have shown that elevated troponin levels in sera of hemodialysis patients point to an increased risk of future cardiac events in a similar manner to the elevated troponin values in sera of patients with unstable angina pectoris. In addition, the bedside tests for cTnT and cTnI alone- or together with myoglobin and CK-ME mass can be used instead of quantitative analyses in the diagnosis of patients with chest pain. These rapid tests are easy to perform and they do not require expensive instrumentation. For the diagnosis of patient with chest pain, routinely myoglobin and CK-ME mass measurements should be performed whenever they are requested (24 h/day) and cTnT or cTnI on admission to the hospital and then 4-6 and 12 hours later and maintained less than 10% in imprecision.

  • PDF

Inhibition of Myoblast Differentiation by Polyamine Depletion with Methylglyoxal Bis(guanylhydrazone)

  • Cho, Hwa-Jeong;Kim, Byeong-Gee;Kim, Han-Do;Kang, Ho-Sung;Kim, Chong-Rak
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.191-196
    • /
    • 1995
  • The role of polyamines in skeletal myoblast differentiation was investigated using the polyamine metabolic inhibitor methylglyoxal bis(guanylhydrazone)(MGBG). Concentrations of intracellular free spermidine and spermine increased 2 to 2.5-fold at the onset of myoblast fusion. The systhesis of actin, and creatine kinase activity both dramatically increased during myotube formation. However, MGBG at a concentration of 0.5 mM not only abolished the increase of intracellular free polyamines, but also reduced cell fusion to almost half the level of untreated cells, without noticeable morphological alteration. The production of actin, and creatine kinase activity were almost completely abolished by MGBG. The inhibition of myoblast fusion by MGBG was partially recovered with 0.1 mM of spermidine or spermine added externally. Results indicate that polyamines are necessary for normal myoblast differentiation. Since the first indication of myoblast differentiation is alignment of muscle cells and membrane fusion of adjacent cells, and since polyamine depletion completely inhibited the synthesis of actin, which might be associted with membranes, polyamine might be involved in myoblast differentiation through membrane reorganization events.

  • PDF

Evaluating Quadriceps Muscle Damage after Downhill Running of Different Intensities using Ultrasonography (내리막 달리기 후 국소 근손상의 영상학적 비교분석 : 운동 강도의 영향)

  • Sun, Min Ghyu;Kim, Choun Sub;Kim, Maeng Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1028-1040
    • /
    • 2019
  • The current study was performed to investigate the magnitude of exercise-induced muscle damage (EIMD) after downhill running (DR) of different intensities and to examine the availability of muscle echo intensity as biomarkers to detect regional damage within quadriceps muscle group (QG) following DR. Healthy college-age men (n=11) were experienced twice DR sessions [$50%HR_{max}$ DR, LDR; $70%HR_{max}$ DR, HDR] separated by a 2-week wash-out period with the random order. After DR, severity of EIMD according to exercise intensity were determined by serum creatine kinase (CK) activity, muscle tenderness, and neuromuscular function indicators such as a maximal voluntary isometric contraction (MVIC) and range of motion (ROM). Transvaginal B-mode imaging had been employed to evaluate regional muscle echo intensity within QG [rectus femoris, RF; vastus lateralis, VL; vastus medialis, VM; vastus intermedius, VI]. After both DR sessions, changes in serum CK activity and muscle tenderness have tended to more increase in HDR compared to those of LDR. There was a significant interaction effect between exercise intensity during DR and the time course of serum CK activity(p<.05). However, there were no statistical differences between sessions in muscle tenderness. The time course of changes in the neuromuscular functions after DR were similar to those of regional muscle echo intensity regardless exercise intensity. Although neuromuscular function showed to decline in HDR more than those of LDR after DR, no statistical differences between sessions. In contrast, there were significant interaction effects between sessions and time course of changes in RF and VL muscle echo intensity(p<.01), but not shown in those of VI and VM. These results indicated that each muscles within the QG show different response profiles for EIMD during DR, exercise intensity influences on these responses as well. In particular, current findings suggested that muscle echo intensity derived from ultrasound imaging is capable of detecting regional muscle damage in QG following DR.

Metabolic Profiling of Eccentric Exercise-Induced Muscle Damage in Human Urine

  • Jang, Hyun-Jun;Lee, Jung Dae;Jeon, Hyun-Sik;Kim, Ah-Ram;Kim, Suhkmann;Lee, Ho-Seong;Kim, Kyu-Bong
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.199-210
    • /
    • 2018
  • Skeletal muscle can be ultrastructurally damaged by eccentric exercise, and the damage causes metabolic disruption in muscle. This study aimed to determine changes in the metabolomic patterns in urine and metabolomic markers in muscle damage after eccentric exercise. Five men and 6 women aged 19~23 years performed 30 min of the bench step exercise at 70 steps per min at a determined step height of 110% of the lower leg length, and stepping frequency at 15 cycles per min. $^1H$ NMR spectral analysis was performed in urine collected from all participants before and after eccentric exercise-induced muscle damage conventionally determined using a visual analogue scale (VAS) and maximal voluntary contraction (MVC). Urinary metabolic profiles were built by multivariate analysis of principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) using SIMCA-P. From the OPLS-DA, men and women were separated 2 hr after the eccentric exercise and the separated patterns were maintained or clarified until 96 hr after the eccentric exercise. Subsequently, urinary metabolic profiles showed distinct trajectory patterns between men and women. Finally, we found increased urinary metabolites (men: alanine, asparagine, citrate, creatine phosphate, ethanol, formate, glucose, glycine, histidine, and lactate; women: adenine) after the eccentric exercise. These results could contribute to understanding metabolic responses following eccentric exercise-induced muscle damage in humans.

Effect of Hyperbaric Oxygen Therapy on the Pain, Range of Motion and Muscle Fatigue Recovery of Delayed Onset Muscle Soreness (고압산소치료가 지연성근육통의 통증, 관절운동범위 및 근피로 회복에 미치는 영향)

  • Kim, Deok Jo;Choi, Won Jye;Son, Kyung Hyun
    • Journal of Korean Physical Therapy Science
    • /
    • v.26 no.2
    • /
    • pp.51-60
    • /
    • 2019
  • Background: The purpose of this study was to investigate the effects of HBOT (hyperbaric oxygen therapy) on the pain, ROM (range of motion) and muscle fatigue recovery of DOMS (delayed onset muscle soreness). Design: Randomized Controlled Trial. Methods: Twenty-six subjects who are student in their 20s at a university participated in this study, these subjects were assigned into two groups, a control group (n=12) and an experiment group (n=14). The subjects in experimental group were intervened by HBOT (40 minutes, 1.3 ATA), while ones on control group weren't by any intervention after induced DOMS. Results: First, in the comparison of VAS (visual analog scale), there were significant variations with the period (p<0.001), interaction of period (p<0.05) and group (p<0.05). In the comparison of PPT (pressure pain threshold), there were significant variations with the period (p<0.001) and interaction of period (p<0.05). Second, in the comparison of ROM, there were significant variations with the period (p<0.001), interaction of period (p<0.001) and group (p<0.01). Third, in the comparison of CK (creatine kinase) and LDH (lactate dehydrogenase), there no signigicant variations with all measure variables. Conclusion: The above results indicated that HBOT were effective to decrease the pain and improve the ROM in DOMS. Also the statistical significant variations of blood factors of muscle fatigue were not found in this.

Comparison of the Muscle Damage and Liver Function in Ultra-Marathon Race (100 km) by Sections

  • Shin, Kyung-A;Kim, Young-Joo
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.276-282
    • /
    • 2012
  • High-intensive endurance exercises induce cell changes in body, changes in structures and functions of the heart, the muscles, the cartilages, and the liver, as well as increase of inflammatory cytokine. The purpose of this study was to estimate the biochemical changes in the liver and muscles during ultra-marathon race (100 km) by sections. The blood of the subjects was collected before the marathon as a control in order to analyze serum creatine kinase (CK), lactic dehydrogenase (LDH), asprtate aminotransferase (AST), alanine aminotransferase (ALT), total(T)-bilirubin, direct(D)-bilirubin, total protein, albumin, uric acid, gamma-glutamyltranspeptidase (${\gamma}$-GTP), alkaline phosphatase (ALP), creatinine, blood urea nitrogen (BUN), and high sensitive C-reactive protein (hs-CRP) concentrations. The CK, LDH, D-bilirubin, AST and ALT concentrations at 50 km and 100 km were significantly increased compared to the control (P<0.05). The markers at 100 km were higher than those at 50 km (P<0.05). The T-bilirubin and hs-CRP concentrations showed no difference among the groups, whereas the markers at 100 km were higher than those of the control and at 50 km (P<0.05). In conclusion, this study shows that the ultra-marathon race (100 km) may induce the damage of the skeletal muscle, liver and kidney, intravascular hemolysis and inflammatory responses.