• 제목/요약/키워드: Muscle, smooth, vascular

검색결과 429건 처리시간 0.022초

Haloperidol 이 심혈관계에 미치는 영향 (Experimental Studies on the Cardiovascular Effects of Haloperidol in Cat and Rabbit)

  • 안영수
    • 대한약리학회지
    • /
    • 제11권2호
    • /
    • pp.19-27
    • /
    • 1975
  • Haloperidol, a butyrophenone, was synthetized by Janssen and introduced for the treatment of psychosis. Although structurally different from the phenothiazines, the butyrophenones share many of their pharmacological properties, such as inhibition of conditioned avoidance response, blocking effect of amphetamine reaction, producing catalepsy, antishock effect and protection against the lethal effects of catecholalmines. Chlorpromazine can lower the arterial blood pressure through its adrenergic blocking activity, its direct effect in relaxing vascular smooth muscle, its direct effect in depressing the myocardium and its action in a complex manner on the central nervous system. In the case of haloperidol, however, was not clarified the mechanism of lowering the blood pressure. The present paper describes the effects of haloperidol on cardiovascular system to investigate the mechanisms of its actions on the arterial blood pressure. The results are followings; 1. In anesthetized cats, intravenous administration of haloperidol and chlorpromazine in the dose of 0.1mg/kg produced a slight decrease in the blood pressure, which followed by complete recovery within $30{\sim}60$ minutes. In the dose of 3mg/kg, however, both produced an abrupt and marked decrease of the blood pressure, which followed by delayed recovery. 2. Haloperidol in the dose ranges of 0.1mg to 3.0mg/kg tended to produce the heart rate slowing in the cats, while chlorpromazine has no effect on the rate. 3. Following administration of haloperidol or chlorpromazine, epinephrine reversal in the arterial blood pressure was observed in the cat, however the responses of norepinephrine and acetylcholine were little affected. 4. In the isolated rabbit atrium the contractility was depressed by haloperidol in the doses over 0.5mg per 100ml, but the rate was not affected. In contrast, the epinephrine-induced contractility was not depressed after haloperidol treatment. However, the increased rate of atrium by epinephrine was partially blocked after haloperidol. 5. In the isolated rabbit aortic strip, epinephrine-induced contraction was blocked by haloperidol. With the above results, it may be concluded that the hypotensive effect of haloperidol was largely due to ${\alpha}$-adrenergic blocking properties and the direct effect in depressing the myocardium as well as its action on central nervous system.

  • PDF

Trichostatin A Modulates Angiotensin II-induced Vasoconstriction and Blood Pressure Via Inhibition of p66shc Activation

  • Kang, Gun;Lee, Yu Ran;Joo, Hee Kyoung;Park, Myoung Soo;Kim, Cuk-Seong;Choi, Sunga;Jeon, ByeongHwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권5호
    • /
    • pp.467-472
    • /
    • 2015
  • Histone deacetylase (HDAC) has been recognized as a potentially useful therapeutic target for cardiovascular disorders. However, the effect of the HDAC inhibitor, trichostatin A (TSA), on vasoreactivity and hypertension remains unknown. We performed aortic coarctation at the inter-renal level in rats in order to create a hypertensive rat model. Hypertension induced by abdominal aortic coarctation was significantly suppressed by chronic treatment with TSA (0.5 mg/kg/day for 7 days). Nicotinamide adenine dinucleotide phosphate-driven reactive oxygen species production was also reduced in the aortas of TSA-treated aortic coarctation rats. The vasoconstriction induced by angiotensin II (Ang II, 100 nM) was inhibited by TSA in both endothelium-intact and endothelium-denuded rat aortas, suggesting that TSA has mainly acted in vascular smooth muscle cells (VSMCs). In cultured rat aortic VSMCs, Ang II increased p66shc phosphorylation, which was inhibited by the Ang II receptor type I ($AT_1R$) inhibitor, valsartan ($10{\mu}M$), but not by the $AT_2R$ inhibitor, PD123319. TSA ($1{\sim}10{\mu}M$) inhibited Ang II-induced p66shc phosphorylation in VSMCs and in HEK293T cells expressing $AT_1R$. Taken together, these results suggest that TSA treatment inhibited vasoconstriction and hypertension via inhibition of Ang II-induced phosphorylation of p66shc through $AT_1R$.

배양 심근세포에서 저농도 삼산화비소에 의한 산화적 스트레스 발생 (Oxidative Stress by Arsenic Trioxide in Cultured Rat Cardiomyocytes, $H_9C_2$ Cells)

  • 박은정;박광식
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권1호
    • /
    • pp.71-79
    • /
    • 2006
  • Epidemiologic studies have showed a close correlation between arsenic exposure and heart disease such as, cardiovascular problem, ischemic heart disease, infarction, atherosclerosis and hypertension in human. It may increase the mortality of high risk group with heart disease. Regarding the mechanism studies of heart failure, blood vessel, vascular smooth muscle cells and endothelial cells have long been focused as the primary targets in arsenic exposure but there are only a few studies on the cardiomyocytes. In this study, the generation of oxidative stress by low dose of arsenic trioxide was investigated in rat cardiomyocytes. By direct measurement of reactive oxygen species and fluorescent microscopic observation using fluorescent dye 2',7'-dichlorofluorescin diacetate, reactive oxygen species were found to be generated without cell death, where cells are treated with 0.1 ppm arsenic for 24 hours. With the induction of reactive oxygen species, GSH level was decreased by the same treatment. However, DNA damage did not seem to be serious by DAPI staining, while high dose of arsenic (2 ppm for 24 hrs) caused fragmentation of DNA. To identify the molecular biomarkers of low-dose arsenic exposure, gene expression was also investigated with whole genome microarray. As results, 9,022 genes were up-regulated including heme oxygenase-l and glutathione S-transrerase, which are well-known biomarkers of oxidative stress. 9,404 genes were down-regulated including endothelial type gp 91-phox gene by the treatment of 0.1 ppm arsenic for 24 hours. This means that biological responses of cardiomyocytes may be altered by ROS induced by low level arsenic without cell death, and this alteration may be detected clearly by molecular biomarkers such as heme oxygenase-1.

조기위암과 우연히 동반된 위의 샘근종(Adenomyoma) 1예 (Incidental Adenomyoma of Stomach Associated with Early Gastric Cancer)

  • 여민석;양현준;서동엽;김기홍;변창규;고영택;이효진;최석호
    • Journal of Gastric Cancer
    • /
    • 제6권1호
    • /
    • pp.43-46
    • /
    • 2006
  • 위의 샘근종과 이소성 췌장의 구별은 어려우며, 샘근종을 이소성 췌장의 한 종류라고 생각하기도 한다. 위의 샘근종과 이소성 췌장의 구별은 이소성 체장에서는 샘창자샘 (Brunner's gland)이 발견되지 않는다는 점이다. 위의 샘근종이 악성화하는 경우는 매우 드물다. 본 증례의 경우, 위체부 하방과 유문부에 종괴가 있었으며, 조직겅검 결과에서 위체부 하방의 종괴는 샘암종으로 진단되었고, 유문부의 종괴는 샘근종으로 진단되었다. 본 증례의 경우, 위의 샘근종이 위암과 우연히 동반된 것이라고 생각된다.

  • PDF

Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway

  • Ha, Jung Min;Jin, Seo Yeon;Lee, Hye Sun;Shin, Hwa Kyoung;Lee, Dong Hyung;Song, Sang Heon;Kim, Chi Dae;Bae, Sun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권5호
    • /
    • pp.533-538
    • /
    • 2016
  • Angiogenesis plays an essential role in embryo development, tissue repair, inflammatory diseases, and tumor growth. In the present study, we showed that endothelial nitric oxide synthase (eNOS) regulates retinal angiogenesis. Mice that lack eNOS showed growth retardation, and retinal vessel development was significantly delayed. In addition, the number of tip cells and filopodia length were significantly reduced in mice lacking eNOS. Retinal endothelial cell proliferation was significantly blocked in mice lacking eNOS, and EMG-2-induced endothelial cell sprouting was significantly reduced in aortic vessels isolated from eNOS-deficient mice. Finally, pericyte recruitment to endothelial cells and vascular smooth muscle cell coverage to blood vessels were attenuated in mice lacking eNOS. Taken together, we suggest that the endothelial cell function and blood vessel maturation are regulated by eNOS during retinal angiogenesis.

NADPH Oxidase and the Cardiovascular Toxicity Associated with Smoking

  • Kim, Mikyung;Han, Chang-Ho;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • 제30권3호
    • /
    • pp.149-157
    • /
    • 2014
  • Smoking is one of the most serious but preventable causes of cardiovascular disease (CVD). Key aspects of pathological process associated with smoking include endothelial dysfunction, a prothrombotic state, inflammation, altered lipid metabolism, and hypoxia. Multiple molecular events are involved in smoking-induced CVD. However, the dysregulations of reactive oxygen species (ROS) generation and metabolism mainly contribute to the development of diverse CVDs, and NADPH oxidase (NOX) has been established as a source of ROS responsible for the pathogenesis of CVD. NOX activation and resultant ROS production by cigarette smoke (CS) treatment have been widely observed in isolated blood vessels and cultured vascular cells, including endothelial and smooth muscle cells. NOX-mediated oxidative stress has also been demonstrated in animal studies. Of the various NOX isoforms, NOX2 has been reported to mediate ROS generation by CS, but other isoforms were not tested thoroughly. Of the many CS constituents, nicotine, methyl vinyl ketone, and ${\alpha}$,${\beta}$-unsaturated aldehydes, such as, acrolein and crotonaldehyde, appear to be primarily responsible for NOX-mediated cytotoxicity, but additional validation will be needed. Human epidemiological studies have reported relationships between polymorphisms in the CYBA gene encoding p22phox, a catalytic subunit of NOX and susceptibility to smoking-related CVDs. In particular, G allele carriers of A640G and $-930^{A/G}$ polymorphisms were found to be vulnerable to smoking-induced cardiovascular toxicity, but results for C242T studies are conflicting. On the whole, evidence implicates the etiological role of NOX in smoking-induced CVD, but the clinical relevance of NOX activation by smoking and its contribution to CVD require further validation in human studies. A detailed understanding of the role of NOX would be helpful to assess the risk of smoking to human health, to define high-risk subgroups, and to develop strategies to prevent or treat smoking-induced CVD.

코팅 용액의 조성 최적화 및 코발트-크롬 금속스텐트의 화학적 표면개질을 통한 친수성 천연 고분자 코팅층의 표면 거칠기 개선 (Improving Smoothness of Hydrophilic Natural Polymer Coating Layer by Optimizing Composition of Coating Solution and Modifying Chemical Properties of Cobalt-Chrome Stent Surface)

  • 김대환;금창헌
    • 한국키틴키토산학회지
    • /
    • 제23권4호
    • /
    • pp.256-261
    • /
    • 2018
  • Recently, the number of cardiovascular disease-related deaths worldwide has increased. Therefore, the importance of percutaneous cardiovascular intervention and drug-eluting stents (DES) has been highlighted. Despite the great clinical success of DES, the re-endothelialization at the site of stent implantation is retarded owing to the anti-proliferative effect from the coated drug, resulting in late thrombosis or very late restenosis. In order to solve this problem, studies have been actively carried out to excavate new drugs that promote rapid re-endothelialization. In this study, we introduced hydrophilic drug, tauroursodeoxycholate (TUDCA), that improves the proliferation of endothelial progenitor cells and promotes apoptosis of vascular smooth muscle cells. In addition, we utilized shellac, which is a natural resin from lac bug to coat TUDCA on the surface of the metal. When using conventional coating method including biodegradable polymers and organic solvents, phase separation between polymer and drug occurred in the coating layer that caused incomplete incorporation of drug into the polymer layer. However, when using shellac as a coating polymer, no phase separation was observed and drug was fully covered with the polymer matrix. In addition, by adjusting the composition of coating solution and modifying the hydrophilicity of the metal surface using oxygen plasma, the surface roughness decreased due to the increased affinity between coating solution and metal surface. This result provides a method of depositing a hydrophilic drug layer on the stent.

초기 단계의 카포시육종과 임상조직학적으로 유사한 다발성미세소정맥혈관종 1예 (Multiple Microvenular Hemangioma Clinicopathologically Mimicking Early Stage Kaposi Sarcoma: A Case Report)

  • 은동혁;김석민;김준영;한만훈;이석종
    • 대한피부과학회지
    • /
    • 제56권10호
    • /
    • pp.631-635
    • /
    • 2018
  • Microvenular hemangioma (MVH) is a rare acquired benign vascular neoplasm, which presents commonly as a solitary purple-to-red nodule or plaque measuring approximately 10 mm in diameter. MVH occurs primarily on the extremities or the trunk. Most lesions are solitary, and multiple lesions are rare. Histopathological features of MVH include numerous, scattered, thin and irregularly branching small vessels in the dermis and endothelial cells without atypia. Owing to similarities in clinical morphology and histopathological features, MVH may often be indistinguishable from the early patch stage of Kaposi sarcoma. Immunohistochemical (IHC) analysis helps differentiate between the 2 diseases. The results of IHC tests in patients with MVH show positive staining for CD31 and smooth muscle actin and typically, negative staining for the human herpes virus 8 antigen. We report a rare case of multiple MVH clinically mimicking the early patch stage of Kaposi sarcoma in a 63-year-old woman who presented with a 3-year history of slowly growing, compressible, soft, bluish-purple macules and plaques on the trunk and right arm.

관상동맥이완과 혈소판응집에 대한 GS283과 GS386의 약리작용기전에 관한 연구 (Pharmacological Mechanism of Action of GS283 and GS386 on Human Platelet and Pig Coronary Artery)

  • 장기철;이회영;이균우;구의본;강영진;이영수
    • Biomolecules & Therapeutics
    • /
    • 제5권3호
    • /
    • pp.239-245
    • /
    • 1997
  • Trimetoquinol (TMQ) and its analogs are known to have thromboxane $A_2$ antagonistic action. We also reported that GS389, chemically similar to TMQ, has competitive antagonistic action in rat aorta and human platelets. In the present study, we investigated the pharmacological characteristics of GS283 and GS 386, analogs of GS389, using vascular smooth muscle, human platelets and rat brain homogenates. In isolated pig coronary artery (PCA), both of GS283 and GS386 relaxed U46619-contracted rings in concentration dependent manner. Pretreatment with several concentrations of GS283 and GS386 shifted the dose-response curves to the right, and reduced of maximum contration dose-dependently. Furthermore, GS283 and GS386 strongly inhibited $Ca^{2+}$ -induced contraction in the PCA. In human platelets, U46619- and A23187-induced platelet aggregation was inhibited by GS283 and GS386, concentration-dependently. Anti-platelet aggregation was related to the compound\`s ability to inhibit ATP release at each stimulation. In rat brain homogenates, receptor-binding assay resulted that both GS283 and GS386 have a relative affinity to $\alpha$-adrenergic receptor. Taken together. we concluded that the mechamism of action of GS283 and GS86 is not related with in TXA$_2$ receptor but concerned with calcium antagonistic action and a-blocking action.n.

  • PDF

Protective effect and mechanism of ginsenoside Rg2 on atherosclerosis

  • Qianqian Xue;Tao Yu;Zhibin Wang;Xiuxiu Fu;Xiaoxin Li;Lu Zou;Min Li;Jae Youl Cho;Yanyan Yang
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.237-245
    • /
    • 2023
  • Background: Ginsenoside Rg2 (Rg2) has a variety of pharmacological activities and provides benefits during inflammation, cancer, and other diseases. However, there are no reports about the relationship between Rg2 and atherosclerosis. Methods: We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to detect the cell viability of Rg2 in vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs). The expression of inflammatory factors in HUVECs and the expression of phenotypic transformation-related marker in VSMCs were detected at mRNA levels. Western blot method was used to detect the expression of inflammation pathways and the expression of phenotypic transformation at the protein levels. The rat carotid balloon injury model was performed to explore the effect of Rg2 on inflammation and phenotypic transformation in vivo. Results: Rg2 decreased the expression of inflammatory factors induced by lipopolysaccharide in HUVECs-without affecting cell viability. These events depend on the blocking regulation of NF-κB and p-ERK signaling pathway. In VSMCs, Rg2 can inhibit the proliferation, migration, and phenotypic transformation of VSMCs induced by platelet derived growth factor-BB (PDGF-BB)-which may contribute to its anti-atherosclerotic role. In rats with carotid balloon injury, Rg2 can reduce intimal proliferation after injury, regulate the inflammatory pathway to reduce inflammatory response, and also suppress the phenotypic transformation of VSMCs. Conclusion: These results suggest that Rg2 can exert its anti-atherosclerotic effect at the cellular level and animal level, which provides a more sufficient basis for ginseng as a functional dietary regulator.