• 제목/요약/키워드: Muscle, smooth, vascular

Search Result 431, Processing Time 0.028 seconds

Effects of Radix Angelicae Gigantis and Resina Ferulae on the Relaxation of Smooth Muscle and Expression of iNOS (당귀 및 아위가 평활근 이완과 iNOS 발현에 미치는 영향)

  • 김성재;송봉근;이언정;김형균;김중길
    • The Journal of Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.60-67
    • /
    • 2000
  • Objectives : Radix Angelicae Gigantis(RAG) and Resina Ferulae(RF) have been used in oriental medicine or folk medicine to increase stamina. The aim of this study was the characterization of the mechanism of action of RAG and RF on smooth muscle and macrophages in rats to find new substances for the treatment of erectile dysfunction, cardiovascular diseases and immune dysfunction. Methods : We investigated the effects of the water extracts of RAG and RF on phenylephrine or KCl-contracted rat endothelium-denuded aorta, the production of NO in vascular smooth muscle cell (VSMC) and the production of NO and induction of iNOS in the $IFN-{\gamma}-primed$ RAW 264.7 cells. Results : The water extracts of the RAG and RF showed significant concentration-dependent relaxation effects on phenylephrine or KCl-contracted rat endothelium-denuded aorta. It also reduced the tension of the rat endothelium denuded aorta which was contracted in $Ca^{2+}-free$ media. On the other hand, it increased production of NO in VSMC which was stimulated with $IL-{\beta}$ or $IL-{\beta}$ plus $IFN-{\gamma}$. The water extracts of RAG and RF increased production of NO and induction of iNOS in the $IFN-{\gamma}-primed$ RAW 264.7 cells. Conclusions : According to the above results, the water extracts of RAG and RF relaxed the smooth muscle effectively and increased the production of NO in VSMC and macrophages. So, these herbs can be applied to erectile dysfunction, hypertension, angina pectoris, artherosclerosis and a defense defect for virus or microbe.

  • PDF

Ethanol Extract of Cynanchum wilfordii Produces Endothelium-Dependent Relaxation in Rat Aorta and Anti-inflammatory Activity in Human Aortic Smooth Muscle Cells

  • Choi, Deok-Ho;Lee, Yun-Jung;Kim, Eun-Joo;Li, Xiang;Kim, Hye-Yoom;Hwang, Sun-Mi;Yoon, Jung-Joo;Lee, So-Min;Min, Eun-Kyeong;Kang, Dae-Gill;Lee, Ho-Sub
    • The Journal of Korean Medicine
    • /
    • v.31 no.6
    • /
    • pp.47-57
    • /
    • 2010
  • Objective: The present study investigated the effect of ethanol extract of Cynanchum wilfordii (ECW) on vascular relaxation and vascular inflammation in rat artery isolated from rats and anti-inflammatory activity in human aortic smooth muscle cells (HASMC). Methods: Vascular tone and guanosine 3',5'-cyclic monophosphate (cGMP) production were examined in rat artery isolated from Sprague Dawley rats, in the presence of ECW. HASMC were incubated with tumor necrosis factor-alpha (TNF-${\alpha}$) or Angiotensin II for 24 h. Matrix metalloproteinase (MMP)-2 and anti-oxidant activity of ECW was investigated by pretreatment with ECW in HASMC. Results: Cumulative treatment of ECW relaxed aortic smooth muscles of rats in a dose-dependent manner. ECW-induced vasorelaxation was significantly decreased by pretreatment of L-arginine methyl ester (L-NAME) or oxadiazolo-quinoxalinone (ODQ). Furthermore, ECW treatment of thoracic aorta significantly increased cGMP production. Incubation of ECW with ODQ or L-NAME markedly decreased ECW-induced cGMP production. ECW treatment dose-dependently suppressed TNF-${\alpha}$- or Angiotensin II-induced increase in matrix metalloproteinase-2 expression in HASMC. Also, ECW exhibited 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity in vitro and reduced TNF-${\alpha}$-induced increase in reactive oxygen species production in a dose-dependent manner. Conclusions: Taken together, the results suggest that ECW exerts vascular relaxation via NO/cGMP signaling pathway and decreases MMP-2 expression via anti-oxidant activity.

Effects of Potassium Ion and Caffeine on Contraction and Cytosolic Free $Ca^{2+}$ Levels in Vascular Smooth Muscle (혈관평할근 세포에서의 칼륨이온과 카페인의 영향: 수축과 세포내 칼슘이온 농도에 대하여)

  • Ahn, H.Y.;Karaki, H.
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.197-201
    • /
    • 1988
  • Effects of high concentration of KC1 and caffeine on cytosolic $Ca^{2+}$ level $([Ca^{2+}]_{cyt})$, measured simultaneously with muscle tension using a fluorescent intracellular $Ca^{2+}$ indicator fura 2, were examined in isolated smooth muscle of rat aorta. High $K^+$ (72.7 mM) solution induced sustained increase in both $([Ca^{2+}]_{cyt})$ and tension. In contrast to this, caffeine (20 mM) induced a rapid increase in $([Ca^{2+}]_{cyt})$ followed by a decrease to a level which was higher than the resting level. However, muscle tension showed only a transient increase followed by a decrease below the resting level. In a $Ca^{2+}-free$ solution, high $K^+-induced$ neither $([Ca^{2+}]_{cyt})$ nor tension, whereas caffeine induced a transient increase in both $([Ca^{2+}]_{cyt})$ and muscle tension. These results suggest that high $K^+-induced$ contraction in vascular smooth muscle of rat aorta is due to $Ca^{2+}$ influx whereas caffeine-induced contraction is due to $Ca^{2+}$ release from cellular store. Further, caffeine seems to have an additional effect to decrease the sensitivity of the contractile elements to $Ca^{2+}$.

  • PDF

The Bioinformatics and Molecular Biology Approaches for Vascular Cell Signaling by Advanced Glycation Endproducts Receptor and Small Ubiquitin-Related Modifier

  • Kim, June Hyun
    • Interdisciplinary Bio Central
    • /
    • v.4 no.4
    • /
    • pp.12.1-12.6
    • /
    • 2012
  • The advanced glycation endproducts receptor (AGE-R) is a signal transduction receptor for multiligand such as S100b and AGEs. S100b has been demonstrated to activate various cells with important links to atherosclerosis initiation and progression including endothelial cells, and smooth muscle cells via AGE-R, triggering activation of multiple signaling cascades through its cytoplasmic domain. Many studies have suggested AGE-R might even participate in the cardiovascular complications involved in the pathogenesis of type I diabetes. Recently, Small Ubiquitin-Related Modifier 1 (SURM-1 also known as SUMO-1) has been recognized as a protein that plays an important role in cellular post-translational modifications in a variety of cellular processes, such as transport, transcriptional, apoptosis and stability. Computer Database search with SUMOplot Analysis program identified the five potential SURMylation sites in human AGE-R: K43, K44, K123, and K273 reside within the extracellular domain of AGE-R, and lastly K374 resides with the cytosolic domain of AGE-R. The presence of the consensus yKXE motif in the AGE-R strongly suggests that AGE-R may be regulated by SURMylation process. To test this, we decided to determine if AGE-R is SURMylated in living vascular cell system. S100b-stimulated murine aortic vascular smooth muscle cells were used for western blot analysis with relevant antibodies. Taken together, bioinformatics database search and molecular biological approaches suggested AGE-R is SURMylated in living cardiovascular cell system. Whilst SURMylation and AGE-R undoubtedly plays an important role in the cardiovascular biology, it remains unclear as to the exact nature of this contribution under both physiological and pathological conditions.

Lobaric Acid Inhibits VCAM-1 Expression in TNF-α-Stimulated Vascular Smooth Muscle Cells via Modulation of NF-κB and MAPK Signaling Pathways

  • Kwon, Ii-Seul;Yim, Joung-Han;Lee, Hong-Kum;Pyo, Suhkneung
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • Lichens have been known to possess multiple biological activities, including anti-proliferative and anti-inflammatory activities. Vascular cell adhesion molecule-1 (VCAM-1) may play a role in the development of atherosclerosis. Hence, VCAM-1 is a possible therapeutic target in the treatment of the inflammatory disease. However, the effect of lobaric acid on VCAM-1 has not yet been investigated and characterized. For this study, we examined the effect of lobaric acid on the inhibition of VCAM-1 in tumor necrosis factor-alpha (TNF-${\alpha}$)-stimulated mouse vascular smooth muscle cells. Western blot and ELISA showed that the increased expression of VCAM-1 by TNF-${\alpha}$ was significantly suppressed by the pre-treatment of lobaric acid ($0.1-10{\mu}g/ml$) for 2 h. Lobaric acid abrogated TNF-${\alpha}$-induced NF-${\kappa}B$ activity through preventing the degradation of $I{\kappa}B$ and phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 mitogen activated protein (MAP) kinase. Lobaric acid also inhibited the expression of TNF-${\alpha}$ receptor 1 (TNF-R1). Overall, our results suggest that lobaric acid inhibited VCAM-1 expression through the inhibition of p38, ERK, JNK and NF-${\kappa}B$ signaling pathways, and downregulation of TNF-R1 expression. Therefore, it is implicated that lobaric acid may suppress inflammation by altering the physiology of the atherosclerotic lesion.

A Novel Urotensin II Receptor Antagonist, KR-36996 Inhibits Smooth Muscle Proliferation through ERK/ROS Pathway

  • Kim, Tae-Ho;Lee, Dong Gil;Kim, Young-Ae;Lee, Byung Ho;Yi, Kyu Yang;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.308-314
    • /
    • 2017
  • Urotensin II (UII) is a mitogenic and hypertrophic agent that can induce the proliferation of vascular cells. UII inhibition has been considered as beneficial strategy for atherosclerosis and restenosis. However, currently there is no therapeutics clinically available for atherosclerosis or restenosis. In this study, we evaluated the effects of a newly synthesized UII receptor (UT) antagonist, KR-36996, on the proliferation of SMCs in vitro and neointima formation in vivo in comparison with GSK-1440115, a known potent UT antagonist. In primary human aortic SMCs (HASMCs), UII (50 nM) induced proliferation was significantly inhibited by KR-36996 at 1, 10, and 100 nM which showed greater potency ($IC_{50}$: 3.5 nM) than GSK-1440115 ($IC_{50}$: 82.3 nM). UII-induced proliferation of HASMC cells was inhibited by U0126, an ERK1/2 inhibitor, but not by SP600125 (inhibitor of JNK) or SB202190 (inhibitor of p38 MAPK). UII increased the phosphorylation level of ERK1/2. Such increase was significantly inhibited by KR-36996. UII-induced proliferation was also inhibited by trolox, a scavenger for reactive oxygen species (ROS). UII-induced ROS generation was also decreased by KR-36996 treatment. In a carotid artery ligation mouse model, intimal thickening was dramatically suppressed by oral treatment with KR-36996 (30 mg/kg) which showed better efficacy than GSK-1440115. These results suggest that KR-36996 is a better candidate than GSK-1440115 in preventing vascular proliferation in the pathogenesis of atherosclerosis and restenosis.

Activating transcription factor 4 aggravates angiotensin II-induced cell dysfunction in human vascular aortic smooth muscle cells via transcriptionally activating fibroblast growth factor 21

  • Tao, Ke;Li, Ming;Gu, Xuefeng;Wang, Ming;Qian, Tianwei;Hu, Lijun;Li, Jiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.347-355
    • /
    • 2022
  • Abdominal aortic aneurysm (AAA) is a life-threatening disorder worldwide. Fibroblast growth factor 21 (FGF21) was shown to display a high level in the plasma of patients with AAA; however, its detailed functions underlying AAA pathogenesis are unclear. An in vitro AAA model was established in human aortic vascular smooth muscle cells (HASMCs) by angiotensin II (Ang-II) stimulation. Cell counting kit-8, wound healing, and Transwell assays were utilized for measuring cell proliferation and migration. RT-qPCR was used for detecting mRNA expression of FGF21 and activating transcription factor 4 (ATF4). Western blotting was utilized for assessing protein levels of FGF21, ATF4, and markers for the contractile phenotype of HASMCs. ChIP and luciferase reporter assays were implemented for identifying the binding relation between AFT4 and FGF21 promoters. FGF21 and ATF4 were both upregulated in Ang-II-treated HASMCs. Knocking down FGF21 attenuated Ang-II-induced proliferation, migration, and phenotype switch of HASMCs. ATF4 activated FGF21 transcription by binding to its promoter. FGF21 overexpression reversed AFT4 silencing-mediated inhibition of cell proliferation, migration, and phenotype switch. ATF4 transcriptionally upregulates FGF21 to promote the proliferation, migration, and phenotype switch of Ang-II-treated HASMCs.

Hyaluronic acid and proteoglycan link protein 1 suppresses platelet-derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells

  • Dan Zhou;Hae Chan Ha;Goowon Yang;Ji Min Jang;Bo Kyung Park;Bo Kyung Park;In Chul Shin;Dae Kyong Kim
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.445-450
    • /
    • 2023
  • The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet-derived growth factor-BB (PDGF-BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases.

Anti-Proliferative Effect of Tetraphenylporphine (TPP) as an Iron Chelator on Vascular Smooth Muscle Cells and its Release Profiles from Polymer Coating Layer (철 킬레이터로서의 tetraphenylporphine의 혈관평활근세포의 성장억제효과와 고분자 코팅막으로부터의 방출 특성)

  • Park, Min-Hee;Kang, Soo-Yong;Park, Hyun-Jeong;Seo, Jin-Seon;Park, Young-A;Kim, Ji-Eun;Kim, Yang-Geun;Whang, Bae-Geon;Munkhjargal, Odonchimeg;Shim, Young-Key;Kho, Weon-Gyu;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.93-98
    • /
    • 2008
  • The drug-eluting stent (DES) implantation is a widely acceptable treatment for coronary heart disease. It was reported that iron chelator had anti-proliferative effect on human vascular smooth muscle cells (HA-VSMCs). In this study, tetraphenylporphine (TPP) was selected as an iron chelator and drug for DES. MTT assay showed that TPP had antiproliferative effect on HA-VSMCs. TPP and polycaprolactone (PCL) were coated onto stainless steel plate using a spraycoating method. From the surface morphology examination of the coated plate by SEM, smooth polymer coating layer could be observed. The thickness of coating layer could be controlled by changing repeating time of coating. From in vitro release test, sustained release of TPP was observed from plate during two weeks. Thus, TPP as iron chelator can be used as drug for stent coating because of its antiproliferative effect and sustain release profile.

Tetrahydrobiopterin Inhibits PDGF-stimulated Migration and Proliferation in Rat Aortic Smooth Muscle Cells via the Nitric Oxide Synthase-independent Pathway

  • Jiang, Xiaowen;Kim, Bo-Kyung;Lin, Haiyue;Lee, Chang-Kwon;Kim, Jung-Hwan;Kang, Hyun;Lee, Pil-Young;Jung, Seung-Hyo;Lee, Hwan-Myung;Won, Kyung-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.177-183
    • /
    • 2010
  • Tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthase (NOS) activity, is known to play important roles in modulating both NO and superoxide production during vascular diseases such as atherosclerosis. However, the role of BH4 in functions of vascular smooth muscle cells is not fully known. In this study, we tested the effects of BH4 and dihydrobiopterin (BH2), a BH4 precursor, on migration and proliferation in response to platelet-derived growth factor-BB (PDGF-BB) in rat aortic smooth muscle cells (RASMCs). Cell migration and proliferation were measured using a Boyden chamber and a 5-bromo-2'-deoxyuridine incorporation assay, respectively, and these results were confirmed with an ex vivo aortic sprout assay. Cell viability was examined by 2,3-bis [2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide assays. BH4 and BH2 decreased PDGF-BBinduced cell migration and proliferation in a dose-dependent manner. The inhibition of cell migration and proliferation by BH4 and BH2 was not affected by pretreatment with $N^G$-nitro-L-arginine methyl ester, a NOS inhibitor. Moreover, the sprout outgrowth formation of aortic rings induced by PDGF-BB was inhibited by BH4 and BH2. Cell viability was not inhibited by BH4 and BH2 treatment. The present results suggest that BH4 and BH2 may inhibit PDGF-stimulated RASMC migration and proliferation via the NOS-independent pathway. Therefore, BH4 and its derivative could be useful for the development of a candidate molecule with an NO-independent anti-atherosclerotic function.