Acknowledgement
This research was supported by the Chung-Ang University Young Scientist Scholarship in 2017, and the grant from the National Research Foundation of Korea (NRF-2017M3A9D8048414), funded by the Korean government (Ministry of Science and ICT).
References
- Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801-809 https://doi.org/10.1038/362801a0
- Singh RB, Mengi SA, Xu YJ, Arneja AS and Dhalla NS (2002) Pathogenesis of atherosclerosis a multifactorial process. Exp Clin Cardiol 7, 40-53
- Shan D, Qu P, Zhong C et al (2022) Anemoside B4 inhibits vascular smooth muscle cell proliferation, migration, and neointimal hyperplasia. Front Cardiovasc Med 9, 907490
- Heldin CH, Lennartsson J and Westermark B (2018) Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med 283, 16-44 https://doi.org/10.1111/joim.12690
- Ha JM, Yun SJ, Kim YW et al (2015) Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1. Biochem Biophys Res Commun 464, 57-62 https://doi.org/10.1016/j.bbrc.2015.05.097
- Pi Y, Zhang LL, Li BH et al (2013) Inhibition of reactive oxygen species generation attenuates TLR4-mediated pro-inflammatory and proliferative phenotype of vascular smooth muscle cells. Lab Invest 93, 880-887 https://doi.org/10.1038/labinvest.2013.79
- Yang K, Zhang XJ, Cao LJ et al (2014) Toll-like receptor 4 mediates inflammatory cytokine secretion in smooth muscle cells induced by oxidized low-density lipoprotein. PLoS One 9, e95935
- Wang TM, Chen KC, Hsu PY et al (2017) MicroRNA let-7g suppresses PDGF-induced conversion of vascular smooth muscle cell into the synthetic phenotype. J Cell Mol Med 21, 3592-3601 https://doi.org/10.1111/jcmm.13269
- Cance WG and Golubovskaya VM (2008) Focal adhesion kinase versus p53: apoptosis or survival? Sci Signal 1, pe22
- Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13, 65-70 https://doi.org/10.1016/S0962-8924(02)00043-0
- Lim ST, Chen XL, Lim Y et al (2008) Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Mol Cell 29, 9-22 https://doi.org/10.1016/j.molcel.2007.11.031
- Chan KC, Ho HH, Lin MC et al (2014) Mulberry water extracts inhibit atherosclerosis through suppression of the integrin-β3/focal adhesion kinase complex and downregulation of nuclear factor κB signaling in vivo and in vitro. J Agric Food Chem 62, 9463-9471 https://doi.org/10.1021/jf502942r
- Lee CK, Lee HM, Kim HJ et al (2007) Syk contributes to PDGF-BB-mediated migration of rat aortic smooth muscle cells via MAPK pathways. Cardiovasc Res 74, 159-168 https://doi.org/10.1016/j.cardiores.2007.01.012
- Romashkova JA and Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401, 86-90 https://doi.org/10.1038/43474
- Yan JF, Huang WJ, Zhao JF et al (2017) The platelet-derived growth factor receptor/STAT3 signaling pathway regulates the phenotypic transition of corpus cavernosum smooth muscle in rats. PLoS One 12, e0172191
- Chen Y, Wang B, Chen Y et al (2022) HAPLN1 affects cell viability and promotes the pro-inflammatory phenotype of fibroblast-like synoviocytes. Front Immunol 13, 888612
- Xia Y, Duca S, Perder B et al (2022) Activation of a transient progenitor state in the epicardium is required for zebrafish heart regeneration. Nat Commun 13, 7704
- Evanko SP, Gooden DM, Kang I, Chan CK, Vernon RB and Wight TN (2020) A role for HAPLN1 during phenotypic modulation of human lung fibroblasts in vitro. J Histochem Cytochem 68, 797-811 https://doi.org/10.1369/0022155420966663
- Ecker BL, Kaur A, Douglass SM et al (2019) Age-related changes in HAPLN1 increase lymphatic permeability and affect routes of melanoma metastasis. Cancer Discov 9, 82-95 https://doi.org/10.1158/2159-8290.CD-18-0168
- Xie X, Urabe G, Marcho L, Stratton M, Guo LW and Kent CK (2019) ALDH1A3 regulations of matricellular proteins promote vascular smooth muscle cell proliferation. iScience 19, 872-882 https://doi.org/10.1016/j.isci.2019.08.044
- Dong X, Hu H, Fang Z, Cui J and Liu F (2018) CTRP6 inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration. Biomed Pharmacother 103, 844-850 https://doi.org/10.1016/j.biopha.2018.04.112
- Osman I, Dong K, Kang X et al (2021) YAP1/TEAD1 upregulate platelet-derived growth factor receptor beta to promote vascular smooth muscle cell proliferation and neointima formation. J Mol Cell Cardiol 156, 20-32 https://doi.org/10.1016/j.yjmcc.2021.03.005
- Gerard C and Goldbeter A (2014) The balance between cell cycle arrest and cell proliferation: control by the extracellular matrix and by contact inhibition. Interface Focus 4, 20130075
- Newby AC and Zaltsman AB (2000) Molecular mechanisms in intimal hyperplasia. J Pathol 190, 300-309 https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<300::AID-PATH596>3.0.CO;2-I
- Yabluchanskiy A, Ma Y, Iyer RP, Hall ME and Lindsey ML (2013) Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology (Bethesda) 28, 391-403 https://doi.org/10.1152/physiol.00029.2013
- Brown RD, Jones GM, Laird RE, Hudson P and Long CS (2007) Cytokines regulate matrix metalloproteinases and migration in cardiac fibroblasts. Biochem Biophys Res Commun 362, 200-205 https://doi.org/10.1016/j.bbrc.2007.08.003
- Chistiakov DA, Orekhov AN and Bobryshev YV (2015) Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf) 214, 33-50 https://doi.org/10.1111/apha.12466
- Chen PY, Qin L, Li G, Tellides G and Simons M (2016) Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation. Sci Rep 6, 33407
- Heldin CH and Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79, 1283-1316 https://doi.org/10.1152/physrev.1999.79.4.1283
- Zhang H, Wang ZW, Wu HB et al (2013) Transforming growth factor-β1 induces matrix metalloproteinase-9 expression in rat vascular smooth muscle cells via ROS-dependent ERK-NF-κB pathways. Mol Cell Biochem 375, 11-21