• Title/Summary/Keyword: Murine model study

Search Result 224, Processing Time 0.03 seconds

The Therapeutic Effects of Optimal Dose of Mesenchymal Stem Cells in a Murine Model of an Elastase Induced-Emphysema

  • Kim, You-Sun;Kim, Ji-Young;Huh, Jin Won;Lee, Sei Won;Choi, Soo Jin;Oh, Yeon-Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.3
    • /
    • pp.239-245
    • /
    • 2015
  • Background: Chronic obstructive pulmonary disease is characterized by emphysema, chronic bronchitis, and small airway remodeling. The alveolar destruction associated with emphysema cannot be repaired by current clinical practices. Stem cell therapy has been successfully used in animal models of cigarette smoke- and elastase-induced emphysema. However, the optimal dose of mesenchymal stem cells (MSCs) for the most effective therapy has not yet been determined. It is vital to determine the optimal dose of MSCs for clinical application in emphysema cases. Methods: In the present study, we evaluated the therapeutic effects of various doses of MSCs on elastase-induced emphysema in mice. When 3 different doses of MSCs were intravenously injected into mice treated with elastase, only $5{\times}10^4$ MSCs showed a significant effect on the emphysematous mouse lung. We also identified action mechanisms of MSCs based on apoptosis, lung regeneration, and protease/antiprotease imbalance. Results: The MSCs were not related with caspase-3/7 dependent apoptosis. But activity of matrix metalloproteinase 9 increased by emphysematous lung was decreased by intravenously injected MSCs. Vascular endothelial growth factor were also increased in lung from MSC injected mice, as compared to un-injected mice. Conclusion: This is the first study on the optimal dose of MSCs as a therapeutic candidate. This data may provide important basic data for determining dosage in clinical application of MSCs in emphysema patients.

TRRAP stimulates the tumorigenic potential of ovarian cancer stem cells

  • Kang, Kyung Taek;Kwon, Yang Woo;Kim, Dae Kyoung;Lee, Su In;Kim, Ki-Hyung;Suh, Dong-Soo;Kim, Jae Ho
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.514-519
    • /
    • 2018
  • Ovarian cancer is the most fatal gynecological malignancy in women and identification of new therapeutic targets is essential for the continued development of therapy for ovarian cancer. TRRAP (transformation/transcription domain-associated protein) is an adaptor protein and a component of histone acetyltransferase complex. The present study was undertaken to investigate the roles played by TRRAP in the proliferation and tumorigenicity of ovarian cancer stem cells. TRRAP expression was found to be up-regulated in the sphere cultures of A2780 ovarian cancer cells. Knockdown of TRRAP significantly decreased cell proliferation and the number of A2780 spheroids. In addition, TRRAP knockdown induced cell cycle arrest and increased apoptotic percentages of A2780 sphere cells. Notably, the mRNA levels of stemness-associated markers, that is, OCT4, SOX2, and NANOG, were suppressed in TRRAP-silenced A2780 sphere cells. In addition, TRRAP overexpression increased the mRNA level of NANOG and the transcriptional activity of NANOG promoter in these cells. Furthermore, TRRAP knockdown significantly reduced tumor growth in a murine xenograft transplantation model. Taken together, the findings of the present study suggest that TRRAP plays an important role in the regulation of the proliferation and stemness of ovarian cancer stem cells.

Exosomes from CIITA-Transfected CT26 Cells Enhance Anti-tumor Effects

  • Fan, Wen;Tian, Xing-De;Huang, E.;Zhang, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.987-991
    • /
    • 2013
  • Aim: To study anti-tumor effects of exosomes from class II transactivator (CIITA) gene transfected CT26 cells. Methods: In this study, we established an MHC class II molecule-expressing murine colon cancer cell line (CT26-CIITA) by transduction of the CIITA gene. Immune effects in vitro and tumor protective results in vivo were tested and monitored. Results: Exosomes from CT26-CIITA cells were found to contain a high level of MHC class II protein. When loaded on dendritic cells (DCs), exosomes from CT26-CIITA cells significantly increased expression of MHC class II molecules, CD86 and CD80, as compared to exosomes from CT26 cells. In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA-Exo enhanced splenocyte proliferation and IFN-${\gamma}$ production of CD4+T cells, while inhibiting IL-10 secretion. In addition, compared to exosomes from CT26 cells, CT26-CIITA-derived exosomes induced higher TNF-${\alpha}$ and IL-12 mRNA levels. A mouse tumour preventive model showed that CT26-CIITA derived exosomes significantly inhibited tumour growth in a dose-dependent manner and significantly prolonged the survival time of tumour-bearing mice. Conclusion: Our findings indicate that CT26-CIITA-released exosomes are more efficient to induce anti-tumour immune responses, suggesting a potential role of MHC class II-containing tumour exosomes as cancer vaccine candidates.

Fermentation-Mediated Enhancement of Ginseng's Anti-Allergic Activity against IgE-Mediated Passive Cutaneous Anaphylaxis In Vivo and In Vitro

  • Hwang, Seon-Weon;Sun, Xiao;Han, Jun-Hyuk;Kim, Tae-Yeon;Koppula, Sushruta;Kang, Tae-Bong;Hwang, Jae-Kwan;Lee, Kwang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1626-1634
    • /
    • 2018
  • Ginseng (the root of Panax ginseng Meyer) fermented by Lactobacillus plantarum has been found to attenuate allergic responses in in vitro and in vivo experimental models. Ginseng has been reported to also possess various biological functions including anti-inflammatory activity. The present study was aimed at comparing the anti-allergic effect of ginseng and fermented ginseng extracts on IgE-mediated passive cutaneous anaphylaxis in vitro in a murine cell line and in vivo in mice. Fermented ginseng extract (FPG) showed higher inhibitory effect against in vitro and in vivo allergic responses when compared with ginseng extract (PG). The secretion of ${\beta}$-hexosaminidase and interleukin (IL)-4 from the IgE-DNP-stimulated RBH-2H3 mast cells were significantly (p < 0.05) inhibited by FPG treatment, and this effect was concentration-dependent. Further, MKK4 activation and subsequent JNK phosphorylation were attenuated by FPG treatment. The inhibitory effect of FPG on the in vitro allergic response was verified in vivo against IgE-DNP-induced passive cutaneous anaphylaxis in a mouse model. These data indicated that the fermentation of ginseng with L. plantarum enhanced its anti-allergic effects both in vitro and in vivo. We predict that compositional changes in the ginsenosides caused by the fermentation may contribute to the change in the anti-allergic effects of ginseng. The results of our study highlight the potential of the use of FPG as a potential anti-allergic agent.

The Processed Radish Extract Melanogenesis in Humans and Induces Anti-Photoaging Effects in Ultraviolet B-Induced Hairless Mouse Model

  • Kim, Hyun-Kyoung
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.125-136
    • /
    • 2019
  • The radish skin and radish greens are an edible part of the radish. But they are removed before eating the radish and used as a byproduct or an animal feed material because of their tough and rough texture. Melanin is a pigment that gives colour to our skin. But increased production of melanin can turn into benign or malignant tumours. These days due to global warming, the amount of Ultra violet (UVB) rays has been extensively increased with sunlight. Due to this, a phenomenon called exogenous photo aging is widely observed for all skin colour and types. As a result of this phenomenon, a set of enzymes called matrix metalloproteinases (MMP's) that serves as degradation enzymes for extracellular matrix proteins mainly collagen is increased, causing depletion in collagen and resulting in early wrinkles formation. Therefore in our study we used the murine melanoma cell line B16/F10 to study the melanogenesis inhibition by Heated radish extract (HRE) in vitro and we used HRM-2 hair less mice exposed to artificial UVB for checking the efficacy of Heated radish extract in vivo. Furthermore, we prepared a 3% Heated radish extract (HRE) cream and checked its effects on human skin. Our results have clearly demonstrated that Heated radish extract (HRE) have potently suppressed the tyrosinase activity and melanin production in B16/F10 cells. It had also reduced the expression of components involved in melanin production pathway both transcriptionally and transitionally. In in vivo studies, HRE had potently suppressed the expression of MMP's and reduced the wrinkle formation and inhibited collagen degradation. Moreover, on human skin, ginseng cream increased the resilience, skin moisture and enhanced the skin tone. Therefore in light of these findings, we conclude that HRE is an excellent skin whitening and antiaging product.

Adverse Effect of Superovulation Treatment on Maturation, Function and Ultrastructural Integrity of Murine Oocytes

  • Lee, Myungook;Ahn, Jong Il;Lee, Ah Ran;Ko, Dong Woo;Yang, Woo Sub;Lee, Gene;Ahn, Ji Yeon;Lim, Jeong Mook
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.558-566
    • /
    • 2017
  • Regular monitoring on experimental animal management found the fluctuation of ART outcome, which showed a necessity to explore whether superovulation treatment is responsible for such unexpected outcome. This study was subsequently conducted to examine whether superovulation treatment can preserve ultrastructural integrity and developmental competence of oocytes following oocyte activation and embryo culture. A randomized study using mouse model was designed and in vitro development (experiment 1), ultrastructural morphology (experiment 2) and functional integrity of the oocytes (experiment 3) retrieved after PMSG/hCG injection (superovulation group) or not (natural ovulation; control group) were evaluated. In experiment 1, more oocytes were retrieved following superovulation than following natural ovulation, but natural ovulation yielded higher (p < 0.0563) maturation rate than superovulation. The capacity of mature oocytes to form pronucleus and to develop into blastocysts in vitro was similar. In experiment 2, a notable (p < 0.0186) increase in mitochondrial deformity, characterized by the formation of vacuolated mitochondria, was detected in the superovulation group. Multivesicular body formation was also increased, whereas early endosome formation was significantly decreased. No obvious changes in other microorganelles, however, were detected, which included the formation and distribution of mitochondria, cortical granules, microvilli, and smooth and rough endoplasmic reticulum. In experiment 3, significant decreases in mitochondrial activity, ATP production and dextran uptake were detected in the superovulation group. In conclusion, superovulation treatment may change both maturational status and functional and ultrastuctural integrity of oocytes. Superovulation effect on preimplantation development can be discussed.

Factors Affecting Primary Culture of Nuclear Transfer Blastocysts for Isolation of Embryonic Stem Cells in Miniature Pigs

  • Kim, Min-Jeong;Ahn, Kwang-Sung;Kim, Young-June;Shim, Ho-Sup
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.133-137
    • /
    • 2009
  • Pluripotent embryonic stem (ES) cells isolated from inner cell mass (ICM) of blastocyst-stage embryos are capable of differentiating into various cell lineages and demonstrate germ-line transmission in experimentally produced chimeras. These cells have a great potential as tools for transgenic animal production, screening of newly-developed drugs, and cell therapy. Miniature pigs, selectively bred pigs for small size, offer several advantages over large breed pigs in biomedical research including human disease model and xenotransplantation. In the present study, factors affecting primary culture of somatic cell nuclear transfer blastocysts from miniature pigs for isolation of ES cells were investigated. Formation of primary colonies occurred only on STO cells in human ES medium. In contrast, no ICM outgrowth was observed on mouse embryonic fibroblasts (MEF) in porcine ES medium. Plating intact blastocysts and isolated ICM resulted in comparable attachment on feeder layer and primary colony formation. After subculture of ES-like colonies, two putative ES cell lines were isolated. Colonies of putative ES cells morphologically resembled murine ES cells. These cells were maintained in culture up to three passages, but lost by spontaneous differentiation. The present study demonstrates factors involved in the early stage of nuclear transfer ES cell isolation in miniature pigs. However, long-term maintenance and characterization of nuclear transfer ES cells in miniature pigs are remained to be done in further studies.

Effects of aloe-emodin on alveolar bone in Porphyromonas gingivalis-induced periodontitis rat model: a pilot study

  • Yang, Ming;Shrestha, Saroj K;Soh, Yunjo;Heo, Seok-Mo
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.5
    • /
    • pp.383-393
    • /
    • 2022
  • Purpose: Aloe-emodin (AE), a natural anthraquinone abundant in aloe plants and rhubarb (Rheum rhabarbarum), has long been used to treat chronic inflammatory diseases. However, AE's underlying mechanisms in periodontal inflammation have not been fully elucidated. Acidic mammalian chitinase (AMCase) is a potential biomarker involved in bone remodeling. This study aimed to evaluate AE's effect on periodontitis in rats and investigate AMCase expression. Methods: Eighteen Sprague-Dawley rats were separated into the following groups: healthy (group 1), disease (group 2), vehicle (group 3), AE high-dose (group 4), and AE low-dose (group 5). Porphyromonas gingivalis ligatures were placed in rats (groups 2-5) for 7 days. Groups 4 and 5 were then treated with AE for an additional 14 days. Saliva was collected from all groups, and probing pocket depth was measured in succession. Periodontal pocket tissues were subjected to histomorphometric analysis after the rats were sacrificed. Bone marrow-derived macrophages and murine macrophages were stimulated with receptor activator of nuclear factor-κB ligand (RANKL) and treated with different concentrations of AE. AMCase expression was detected from the analysis of saliva, periodontal pocket tissues, and differentiated osteoclasts. Results: Among rats with P. gingivalis-induced periodontitis, the alveolar bone resorption levels and periodontal pocket depth were significantly reduced after treatment with AE. AMCase protein expression was significantly higher in the disease group than in the healthy control (P<0.05). However, AE inhibited periodontal inflammation by downregulating AMCase expression in saliva and periodontal pocket tissue. AE significantly reduced RANKL-stimulated osteoclastogenesis by modulating AMCase (P<0.05). Conclusions: AE decreases alveolar bone loss and periodontal inflammation, suggesting that this natural anthraquinone has potential value as a novel therapeutic agent against periodontal disease.

Evaluation of schistosomula lung antigen preparation and soluble egg antigen vaccines on experimental schistosomiasis mansoni

  • Nagwa S. M. Aly;Hye-Sook Kim;Maysa A. Eraky;Asmaa A. El Kholy;Basma T. Ali;Shin-ichi Miyoshi;Rabab E. Omar
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.3
    • /
    • pp.251-262
    • /
    • 2023
  • Schistosomiasis causes significant morbidity and mortality worldwide. This study aimed to assess the effect of schistosomula lung antigen preparation (SLAP) and soluble egg antigen (SEA) on a murine schistosomiasis mansoni model. Ninety laboratory-bred male Swiss albino mice were divided into 6 groups. Two doses of the vaccine were given at 2-week intervals. All mice were subcutaneously infected with 80±10 Schistosoma mansoni cercariae 2 weeks after the last vaccination dose. They were sacrificed 7 weeks post-infection. Parasitological and histopathological studies were conducted to assess the effect of inoculated antigens (single or combined). The results showed that the combination of SLAP and SEA (combination group) led to a significant reduction in worm burden (65.56%), and liver and intestine egg count (59% and 60.59%, respectively). The oogram pattern revealed a reduction in immature and mature eggs (15±0.4 and 10±0.8, respectively) and an increased number of dead eggs in the combination group (P<0.001). In terms of histopathological changes, the combination group showed notably small compact fibrocellular egg granuloma and moderate fibrosis in the liver. A high percentage of destroyed ova was observed in the intestine of the combination group. This study demonstrates for the first time the prophylactic effect of combined SLAP and SEA vaccine. The vaccine induced a significant reduction in the parasitological and pathological impacts of schistosomiasis mansoni in hepatic and intestinal tissues, making it a promising vaccine candidate for controlling schistosomiasis.

Efficacy of recombinant enolase as a candidate vaccine against Haemaphysalis longicornis tick infestation in mice

  • Md. Samiul Haque;Mohammad Saiful Islam;Myung-Jo You
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.4
    • /
    • pp.439-448
    • /
    • 2023
  • Tick infestation causes a significant threat to human and animal health, requiring effective immunological control methods. This study aimed to investigate the potential of recombinant Haemaphysalis longicornis enolase protein for tick vaccine development. The exact mechanism of the recently identified enolase protein from the H. longicornis Jeju strain remains poorly understood. Enolase plays a crucial role in glycolysis, the metabolic process that converts glucose into energy, and is essential for the motility, adhesion, invasion, growth, and differentiation of ticks. In this study, mice were immunized with recombinant enolase, and polyclonal antibodies were generated. Western blot analysis confirmed the specific recognition of enolase by the antiserum. The effects of immunization on tick feeding and attachment were assessed. Adult ticks attached to the recombinant enolase-immunized mice demonstrated longer attachment time, increased bloodsucking abilities, and lower engorgement weight than the controls. The nymphs and larvae had a reduced attachment rate and low engorgement rate compared to the controls. Mice immunized with recombinant enolase expressed in Escherichia coli displayed 90% efficacy in preventing tick infestation. The glycolytic nature of enolase and its involvement in crucial physiological processes makes it an attractive target for disrupting tick survival and disease transmission. Polyclonal antibodies recognize enolase and significantly reduce attachment rates, tick feeding, and engorgement. Our findings indicate that recombinant enolase may be a valuable vaccine candidate for H. longicornis infection in experimental murine model.