DOI QR코드

DOI QR Code

Exosomes from CIITA-Transfected CT26 Cells Enhance Anti-tumor Effects

  • Fan, Wen (First Affiliated Hospital of Yangtze University) ;
  • Tian, Xing-De (First Affiliated Hospital of Yangtze University) ;
  • Huang, E. (First Affiliated Hospital of Yangtze University) ;
  • Zhang, Jia-Jun (First Affiliated Hospital of Yangtze University)
  • Published : 2013.02.28

Abstract

Aim: To study anti-tumor effects of exosomes from class II transactivator (CIITA) gene transfected CT26 cells. Methods: In this study, we established an MHC class II molecule-expressing murine colon cancer cell line (CT26-CIITA) by transduction of the CIITA gene. Immune effects in vitro and tumor protective results in vivo were tested and monitored. Results: Exosomes from CT26-CIITA cells were found to contain a high level of MHC class II protein. When loaded on dendritic cells (DCs), exosomes from CT26-CIITA cells significantly increased expression of MHC class II molecules, CD86 and CD80, as compared to exosomes from CT26 cells. In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA-Exo enhanced splenocyte proliferation and IFN-${\gamma}$ production of CD4+T cells, while inhibiting IL-10 secretion. In addition, compared to exosomes from CT26 cells, CT26-CIITA-derived exosomes induced higher TNF-${\alpha}$ and IL-12 mRNA levels. A mouse tumour preventive model showed that CT26-CIITA derived exosomes significantly inhibited tumour growth in a dose-dependent manner and significantly prolonged the survival time of tumour-bearing mice. Conclusion: Our findings indicate that CT26-CIITA-released exosomes are more efficient to induce anti-tumour immune responses, suggesting a potential role of MHC class II-containing tumour exosomes as cancer vaccine candidates.

Keywords

References

  1. Andre F, Chaput N, Schartz NE, et al (2004). Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol, 172, 2126-36. https://doi.org/10.4049/jimmunol.172.4.2126
  2. Bobrie A, Colombo M, Raposo G, et al (2011). Exosome secretion: molecular mechanisms and roles in immune responses. Traffic, 12, 1659-68. https://doi.org/10.1111/j.1600-0854.2011.01225.x
  3. Caby MP, Lankar D, Vincendeau-Scherrer C, et al (2005). Exosomal-like vesicles are present in human blood plasma. Int Immunol, 17, 879-87. https://doi.org/10.1093/intimm/dxh267
  4. Chaput N, Thery C (2011). Exosomes: immune properties and potential clinical implementations. Semin Immunopathol, 33, 419-40. https://doi.org/10.1007/s00281-010-0233-9
  5. Cheng Y, Sanderson C, Jones M, et al (2012). Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics, 64, 525-33. https://doi.org/10.1007/s00251-012-0614-4
  6. Cho JA, Lee YS, Kim SH, et al (2009). MHC independent anti-tumor immune responses induced by Hsp70-enriched exosomes generatetumor regression in murine models. Cancer Lett, 275, 256-65. https://doi.org/10.1016/j.canlet.2008.10.021
  7. de Vrij J, Maas SL, Hegmans JP, et al (2011).[Exosomes and cancer]. Ned Tijdschr Geneeskd, 155, A3677.
  8. Filipazzi P, Burdek M, Villa A, et al (2012). Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol, 22, 342-9. https://doi.org/10.1016/j.semcancer.2012.02.005
  9. Frangione V, Mortara L, Castellani P, et al (2010).CIITA-driven MHC-II positive tumor cells: preventive vaccines and superior generators of antitumor $CD4_{+}$ T lymphocytes for immunotherapy. Int J Cancer, 127, 1614-24. https://doi.org/10.1002/ijc.25183
  10. Gastpar R, Gehrmann M, Bausero MA, et al (2005). Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res, 65, 5238-47. https://doi.org/10.1158/0008-5472.CAN-04-3804
  11. Hao S, Yuan J, Xiang J (2007). Nonspecific $CD4(^{+})$ T cells with uptake of antigen-specific dendritic cell-released exosomes stimulate antigen-specific $CD8(^{+})$ CTL responses and long-term T cell memory. J Leukoc Biol, 82, 829-38. https://doi.org/10.1189/jlb.0407249
  12. Luketic L, Delanghe J, Sobol PT, et al (2007). Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. J Immunol, 179, 5024-32. https://doi.org/10.4049/jimmunol.179.8.5024
  13. Lv LH, Wan YL, Lin Y, et al (2012).Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell anti-tumor responses in vitro. J Biol Chem, 287, 15874-85. https://doi.org/10.1074/jbc.M112.340588
  14. Martin-Jaular L, Nakayasu ES, Ferrer M, et al (2011). Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS One, 6, e26588. https://doi.org/10.1371/journal.pone.0026588
  15. Mathias RA, Lim JW, Ji H, et al (2009). Isolation of extracellular membranous vesicles for proteomic analysis. Methods Mol Biol, 528, 227-42. https://doi.org/10.1007/978-1-60327-310-7_16
  16. Morse MA, Secord AA, Blackwell K, et al (2011). MHC class I-presented tumor antigens identified in ovarian cancer by immunoprot-eomic analysisare targets for T-cell responses against breast and ovarian cancer. Clin Cancer Res, 17, 3408-19. https://doi.org/10.1158/1078-0432.CCR-10-2614
  17. Mortara L, Castellani P, Meazza R, et al (2006). CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a Th1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clin Cancer Res, 12, 3435-43. https://doi.org/10.1158/1078-0432.CCR-06-0165
  18. Nazarenko I, Rana S, Baumann A, et al (2010). Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res, 70, 1668-78. https://doi.org/10.1158/0008-5472.CAN-09-2470
  19. Rountree RB, Mandl SJ, Nachtwey JM, et al (2011). Exosome targeting of tumor antigens expressed by cancer vaccines can improve antigen immunogenicity and therapeutic efficacy. Cancer Res, 71, 5235-44. https://doi.org/10.1158/0008-5472.CAN-10-4076
  20. Sartoris S, Brendolan A, Degola A, et al (2000). Analysis of CIITA encoding AIR-1 gene promoters in insulin-dependent diabetes mellitus and rheumatoid arthritis patients from the northeast of Italy: absence of sequence variability. Hum Immunol, 61, 599-604. https://doi.org/10.1016/S0198-8859(00)00121-X
  21. Schnitzer JK, Berzel S, Fajardo-Moser M, et al (2010). Fragments of antigen-loaded dendritic cells (DC) and DC-derived exosomes induce protective immunity against Leishmania major. Vaccine, 28, 5785-93. https://doi.org/10.1016/j.vaccine.2010.06.077
  22. Silva J, Garcia V, Rodriguez M, et al (2012). Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer, 51, 409-18. https://doi.org/10.1002/gcc.21926
  23. Southcombe J, Tannetta D, Redman C, et al (2011). The immunomodulatory role of syncytiotrophoblast microvesicles. PLoS One, 6, e20245. https://doi.org/10.1371/journal.pone.0020245
  24. Tan A, De La Pena H, Seifalian AM (2010). The application of exosomes as a nanoscale cancer vaccine. Int J Nanomedicine, 5, 889-900.
  25. van Niel G, Raposo G, Candalh C, et al (2001). Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology, 121, 337-49. https://doi.org/10.1053/gast.2001.26263
  26. Verweij FJ, van Eijndhoven MA, Hopmans ES, et al (2011). LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-${\kappa}B$ activation. EMBO J, 30, 2115-29. https://doi.org/10.1038/emboj.2011.123
  27. Viaud S, Thery C, Ploix S, et al (2010). Dendritic cell-derived exosomes for cancer immunotherapy: what's next? Cancer Res, 70, 1281-5. https://doi.org/10.1158/0008-5472.CAN-09-3276
  28. Wiley RD, Gummuluru S (2006). Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci USA, 103, 738-43. https://doi.org/10.1073/pnas.0507995103

Cited by

  1. Exosomes from breast cancer cells stimulate proliferation and inhibit apoptosis of CD133+ cancer cells in vitro vol.11, pp.1, 2014, https://doi.org/10.3892/mmr.2014.2749
  2. Exosome-derived microRNA-29c Induces Apoptosis of BIU-87 Cells by Down Regulating BCL-2 and MCL-1 vol.15, pp.8, 2014, https://doi.org/10.7314/APJCP.2014.15.8.3471
  3. Development of potent class II transactivator gene delivery systems capable of inducing de novo MHC II expression in human cells, in vitro and ex vivo vol.24, pp.6, 2017, https://doi.org/10.1038/gt.2017.25
  4. TGF-β1-silenced leukemia cell-derived exosomes target dendritic cells to induce potent anti-leukemic immunity in a mouse model vol.66, pp.10, 2017, https://doi.org/10.1007/s00262-017-2028-5
  5. Extracellular vesicles of ETV2 transfected fibroblasts stimulate endothelial cells and improve neovascularization in a murine model of hindlimb ischemia vol.69, pp.5, 2017, https://doi.org/10.1007/s10616-017-0095-2