• 제목/요약/키워드: Murine fibroblasts

검색결과 26건 처리시간 0.024초

솔잎에서 분리된 항산화 물질인 4-hydroxy-5methyl-3[2H]-furanone의 멜라닌 생성 억제작용 (Anti-melanogenesis effect of 4-hydroxy-5-methyl-3[2H]-furanone, an antioxidant isolated from pine needles)

  • 부용출;전체옥
    • 대한화장품학회지
    • /
    • 제20권1호
    • /
    • pp.1-13
    • /
    • 1994
  • 솔잎으로부터 프리 라디칼 소거 작용이 있는 물질을 분리하고, 여러 기기 분석 결과에 근거하여 4-hydroxy-5-methyl-3[2H]-furanone (HMF) 으로 동정하였다. 이 물질이 1, 1-diphenyl-2-picrylhydrazyl 프리 라디칼에 대한 소거 작용이 공지의 항산화 물질인 a-tocopherol, ascorbic acid와 유사하였다. HMF는 흰쥐 간 microsome분획에서 Fe(II)/ascorbate에 의해 유도된 지질 과산화를 억제하였으며, 배양 fibroblast 세포에서 자외선에 대한 보호효과를 나타내었다. 이 물질은 또한 tyrosine의 효소적 산화와 Dopa의 자동 산화를 억제하였을 뿐만 아니라 배양 murine melanoma 세포에서도 강력한 멜라닌 생성 억제 작용을 보였다. 피부 세포에서의 멜라닌 생성이 산화적 스트레스에 의해 유발되고 또 효소, 비효소적인 산화 반응을 통해 진행된다고 볼 때, HMF는 이러한 각 단계에서 항산화제로 작용하여 궁극적으로 세포에서의 멜라닌 생성을 막는 것으로 추론되었다.

  • PDF

Non-histone protein HMGB1 inhibits the repair of damaged DNA by cisplatin in NIH-3T3 murine fibroblasts

  • Yusein-Myashkova, Shazie;Ugrinova, Iva;Pasheva, Evdokia
    • BMB Reports
    • /
    • 제49권2호
    • /
    • pp.99-104
    • /
    • 2016
  • The nuclear non-histone protein high mobility group box (HMGB) 1 is known to having an inhibitory effect on the repair of DNA damaged by the antitumor drug cisplatin in vitro. To investigate the role of HMGB1 in living cells, we studied the DNA repair of cisplatin damages in mouse fibroblast cell line, NIH-3T3. We evaluated the effect of the post-synthetic acetylation and C-terminal domain of the protein by overexpression of the parental and mutant GFP fused forms of HMGB1. The results revealed that HMGB1 had also an inhibitory effect on the repair of cisplatin damaged DNA in vivo. The silencing of HMGB1 in NIH-3T3 cells increased the cellular DNA repair potential. The increased levels of repair synthesis could be "rescued" and returned to less than normal levels if the knockdown cells were transfected with plasmids encoding HMGB1 and HMGB1 K2A. In this case, the truncated form of HMGB1 also exhibited a slight inhibitory effect.

3C8, a new monoclonal antibody directed against a follicular dendritic cell line, HK

  • Lee, In Yong;Lee, Joonhee;Park, Weon Seo;Nam, Eui-Cheol;Shin, Yung Oh;Choe, Jongseon
    • IMMUNE NETWORK
    • /
    • 제1권1호
    • /
    • pp.26-31
    • /
    • 2001
  • Background : Follicular dendritic cells (FDCs) play key roles during T cell-dependent humoral immune responses by allowing antigen-specific B cells to survive, proliferate, and differentiate within the FDC networks of secondary follicles, i.e., germinal centers (GC). Methods: A novel monoclonal antibody, 3C8, was generated by immunizing with an FDC line HK, in order to understand the molecular signals involved in the FDC-B cell interactions in the microenvironment of the GC. Results: The 3C8 antibody did not bind to mononuclear cells, including T cells, B cells, and monocytes. Murine L929 and human skin fibroblasts exhibited no or little reactivity to 3C8. However, 3C8 specifically recognized HK cells by flowcytometry. Furthermore, the antigen recognized by 3C8 was restricted to the GC of the human tonsil. Dendritic networks of the GC were intensely stained by 3C8, but cells outside the GC were not. Conclusion: Our results suggest that the antigen 3C8 may play some unique role on FDCs during the GC reactions.

  • PDF

Role of E2F1 in Endoplasmic Reticulum Stress Signaling

  • Park, Kyung Mi;Kim, Dong Joon;Paik, Sang Gi;Kim, Soo Jung;Yeom, Young Il
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.356-359
    • /
    • 2006
  • The transcription factor E2F1 coordinates cell cycle progression and induces apoptosis in response to DNA damage stress. Aside from DNA damage, the role of E2F1 in the endoplasmic reticulum (ER) stress signaling pathways is unclear. We found that $E2F1^{-/-}$ murine embryonic fibroblasts (MEFs) are resistant to apoptosis triggered by the ER stress inducer thapsigargin. In addition, E2F1 deficiency results in enhanced phosphorylation of eukaryotic translation initiation factor $2{\alpha}$ ($elF2{\alpha}$). These results therefore indicate that E2F1 deficiency increases phosphorylation of $elF2{\alpha}$ in response to ER stress triggered by thapsigargin, and suggest that the reduction in ER stress-induced apoptosis in E2F1-deficient cells is related to the high level of $elF2{\alpha}$ phosphorylation.

Hydrogen Treatment Protects against Cell Death and Senescence Induced by Oxidative Damage

  • Han, A Lum;Park, Seong-Hoon;Park, Mi Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.365-371
    • /
    • 2017
  • Hydrogen has potential for preventive and therapeutic applications as an antioxidant. However, micro- and macroparticles of hydrogen in water disappear easily over time. In order to eliminate reactive oxygen species (ROS) related with the aging process, we used functional water containing nanoparticle hydrogen. Nanoparticle hydrogen does not disappear easily and collapse under water after long periods of time. We used murine embryonic fibroblasts that were isolated from 12.5-day embryos of C57BL/6 mice. We investigated the ability of nanoparticle hydrogen in water to suppress hydroxyurea-induced ROS production, cytotoxicity, and the accumulation of ${\beta}-galactosidase$ (an indicator of aging), and promote cell proliferation. The accumulation of ${\beta}-galactosidase$ in the cytoplasm and the appearance of abnormal nuclei were inhibited by daily treatment of cells with hydrogen water. When the aging process was accelerated by hydroxyurea-induced oxidative stress, the effect of hydrogen water was even more remarkable. Thus, this study showed the antioxidant and anti-senescence effects of hydrogen water. Nanoparticle hydrogen water is potentially a potent anti-aging agent.

Biocompatibility of Nanoscale Hydroxyapatite-embedded Chitosan Films

  • Sun, Fangfang;Koh, Kwangnak;Ryu, Su-Chak;Han, Dong-Wook;Lee, Jaebeom
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.3950-3956
    • /
    • 2012
  • In order to improve the bioactivity and mechanical properties of hydroxyapatite (HAp), chitosan (Chi) was in situ combined into HAp to fabricate a composite scaffold by a sublimation-assisted compression method. A highly porous film with sufficient mechanical strength was prepared and the bioactivity was investigated by examining the apatite formed on the scaffolds incubated in simulated body fluid. In addition, the cytotoxicity of the HAp/Chi composite was studied by evaluating the viability of murine fibroblasts (L-929 cells) exposed to diluted extracts of the composite films. The apatite layer was assessed using scanning electronic microscopy, inductively coupled plasma-optical emission spectrometry and weight measurement. Composite analysis showed that a layer of micro-sized, needle-like crystals was formed on the surface of the composite film. Additionally, the WST-8 assay after L-929 cells were exposed to diluted extracts of the composite indicated that the HAp/Chi scaffold has good in vitro cytocompatibility. The results indicated that HAp/Chi composites with porous structure are promising scaffolding materials for bone-patch engineering because their porous morphology can provide an environment conductive to attachment and growth of osteoblasts and osteogenic cells.

Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study

  • Lee, Hyo-Jung;Lee, Jaden;Lee, Jung-Tae;Hong, Ji-Soo;Lim, Bum-Soon;Park, Hee-Jung;Kim, Young-Kwang;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • 제45권3호
    • /
    • pp.120-126
    • /
    • 2015
  • Purpose: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues. Methods: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens. Results: Group C presented the lowest water contact angle ($62.89{\pm}5.66{\theta}$), highest surface energy ($45{\pm}1.2mN/m$), and highest surface roughness ($Ra=22.351{\pm}2.766{\mu}m$). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue. Conclusions: Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.

마우스 비장 림프구 및 과립구에 대한 톡소포자충 RH tachyzoite 감염 실험 (Experimental infection of murine splenic Iymphocytes and grrnulocytes with Toxoplasma gondii RH tachyzoites)

  • 채종일;국진아
    • Parasites, Hosts and Diseases
    • /
    • 제35권2호
    • /
    • pp.79-86
    • /
    • 1997
  • 톡소포자충의 숙주-기생충 상호관계 연구의 일환으로 마우스 비장에서 분리한 T 림프구. B 림프 구 및 과립구(대부분 호중구로 구성)에 톡소포자층의 tachyzoites를 감염시킨 후 감염된 림프구와 호중구의 미세형태 변화를 관찰하는 한편 각 세포의 충체 감염에 대한 감수성을 동위원소 흡수시 험법을 이용하여 정량화하였다. 충체는 병원성이 강한 RH 주를 샤용하였고 각 세포는 BALB/c와 CBA 마우스의 비장에서 분리하여 사용하였다. 감염 후 24시간에 관찰한 결과, T 림프구, B 림프 구 및 호중구는 마우스 주에 상관없이 세포질 내에 tachyzoites가 한 개, 두 개 또는 7-8개까지 관찰되었다. 감염된 T 림프구는 충체 주변에 형성죈 parasitophorous vacuole로 인해 핵이 한 쪽으로 밀리며. 미토콘드리아의 수가 증가하였다 감염된 B 림프구는 조내형질세망(RER)이 대조군에 비해 발달하지 않았으며 감염된 호중구는 과립의 수가 현저히 감소하였다 림프구와 호중구의 톡소포자충 감염에 대한 감수성을 3H-uracil 흡수량으로 정량화한 결과. 마우스 주에 따른 차이는 없었고 모든 종류의 세포 내에서 충체가 활발히 증식함이 확인되었다. 이상의 결과로 볼 때, BALB/c와 CBA 마우스의 비장 T 림프구, B 림프구 및 호중구는 모두 톡소포자충의 tachyzoites 감염에 대해 감수성이 높음을 알 수 있었고, 감염된 면역세포는 그 기능이 저하될 것으로 추측된다.

  • PDF

Differential Localisation of PARP-1 N-Terminal Fragment in PARP-1+/+ and PARP-1-/- Murine Cells

  • Rajiah, Ida Rachel;Skepper, Jeremy
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.526-531
    • /
    • 2014
  • Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 Nterminal fragment encompassing NLS in PARP-$1^{+/+}$ and PARP-$1^{-/-}$ mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-$1^{+/+}$ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-$1^{-/-}$ cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.

조류의 다능성 생식세포주 확립 및 분화 특성에 관한 연구

  • 박태섭;한재용
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2001년도 제18차 정기총회 및 학술발표 PROCEEDINGS
    • /
    • pp.40-46
    • /
    • 2001
  • The use of pluripotent stem cells has tremendous advantages for various purposes but these cell lines with proven germ-line transmission have been completely established only in the mouse. Embryonic germ (EG) cell lines are also pluripotent and undifferentiated stem cells established from primordial germ cells (PGCs). This study was conducted to establish and characterize the chicken EG cells derived from gonadal primordial germ cells. We isolated gonadal PGCs from 5.5-day-old (stage 28) White leghorn (WL) embryos and established chicken EG cells lines with EG culture medium supplemented with human stem cell factor (hSCF), murine leukemia inhibitory factor (mLIF), bovine basic fibroblast growth factor (bFGF), human interleukin-11 (hIL-11), and human insulin-like growth factor-I (hIGF-I). These cells grew continuously for 4 months (10 passages) on a feeder layer of mitotically active chicken embryonic fibroblasts. These cells were characterized by screening with the Periodic acid-Shiff's reaction, anti-SSEA-1 antibody, and a proliferation assay after several passages. As the results, the chicken EG cells maintained characteristics of undifferentiated stem cells as well as that of gonadal PGCs. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types when re-seeded onto culture dish. The chicken EG cells were injected into blastodermal layer at stage X and dorsal aorta of recipient embryo at stage 14 (incubation of 53hrs) and produced chimeric chickens with various differentiated tissues derived from the EG cells. The germline chimeras were also successfully induced by using EG cells. Thus, Chicken EG cells will be useful for the production of transgenic chickena and for studies of germ cell differentiation and genomic imprinting.

  • PDF