References
- Halliwell B, Cross CE. 1994. Oxygen-derived species: their relation to human disease and environmental stress. Environ. Health Perspect. 102(Suppl 10): 5-12. https://doi.org/10.1289/ehp.94102s75
- Circu ML, Moyer MP, Harrison L, Aw TY. 2009. Contribution of glutathione status to oxidant-induced mitochondrial DNA damage in colonic epithelial cells. Free Radic. Biol. Med. 47: 1190-1198. https://doi.org/10.1016/j.freeradbiomed.2009.07.032
- Ricci C, Pastukh V, Leonard J, Turrens J, Wilson G, Schaffer D, Schaffer SW. 2008. Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis. Am. J. Physiol. Cell Physiol. 294: C413-C422. https://doi.org/10.1152/ajpcell.00362.2007
- Harman D. 1956. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298-300. https://doi.org/10.1093/geronj/11.3.298
- Beckman KB, Ames BN. 1998. The free radical theory of aging matures. Physiol. Rev. 78: 547-581. https://doi.org/10.1152/physrev.1998.78.2.547
- Kregel KC, Zhang HJ. 2007. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292: R18-R36. https://doi.org/10.1152/ajpregu.00327.2006
- Loeb LA, Wallace DC, Martin GM. 2005. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc. Natl. Acad. Sci. USA 102: 18769-18770. https://doi.org/10.1073/pnas.0509776102
- Sanz A, Pamplona R, Barja G. 2006. Is the mitochondrial free radical theory of aging intact? Antioxid. Redox Signal. 8: 582-599. https://doi.org/10.1089/ars.2006.8.582
- Chen HL, Qu LN, Li QD, Bi L, Huang ZM, Li YH. 2009. Simulated microgravity-induced oxidative stress in different areas of rat brain. Sheng Li Xue Bao [Acta Physiol. Sinica] 61: 108-114.
- Zhang JY, Liu C, Zhou L, Qu K, Wang R, Tai MH, et al. 2012. A review of hydrogen as a new medical therapy. Hepatogastroenterology 59: 1026-1032.
-
Buxton GV, Greenstock CL, Helman WP, Ross AB. 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (
${\cdot}OH/{\cdot}OH^-$ ) in aqueous solution. J. Phys. Chem. Ref. Data 17: 513-886. https://doi.org/10.1063/1.555805 - Chuai Y, Gao F, Li B, Zhao L, Qian L, Cao F, et al. 2012. Hydrogen-rich saline attenuates radiation-induced male germ cell loss in mice through reducing hydroxyl radicals. Biochem. J. 442: 49-56. https://doi.org/10.1042/BJ20111786
- Gogate PR, Pundit AB. 2005. A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrason. Sonochem. 12: 21-27. https://doi.org/10.1016/j.ultsonch.2004.03.007
- Krishnan JS, Dwivedi P, Moholkar VS. 2006. Numerical investigation into the chemistry induced by hydrodynamic cavitation. Ind. Eng. Chem. Res. 45: 1493-1504. https://doi.org/10.1021/ie050839t
- Takahashi M, Chiba K, Li P. 2007. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 111: 1343-1347. https://doi.org/10.1021/jp0669254
- Oh SH, Yoon SH, Song H, Han JG, Kim J-M. 2013. Effect of hydrogen nanobubble addition on combustion characteristics of gasoline engine. Int. J. Hydrogen Energy 38, 13: 14849-14853. https://doi.org/10.1016/j.ijhydene.2013.09.063
- Agarwal A, Ng WJ, Liu Y. 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84: 1175-1180. https://doi.org/10.1016/j.chemosphere.2011.05.054
- Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N. 2010. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome - an open label pilot study. J. Clin. Biochem. Nutr. 46: 140-149. https://doi.org/10.3164/jcbn.09-100
- Kang K-M, Kang Y-N, Choi I-B, Gu Y, Kawamura T, Toyoda Y, Nakao A. 2011. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors. Med. Gas Res. 1: 11. https://doi.org/10.1186/2045-9912-1-11
- Kawai D, Takaki A, Nakatsuka A, Wada J, Tamaki N, Yasunaka T, et al. 2012. Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology 56: 912-921. https://doi.org/10.1002/hep.25782
- Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, et al. 2007. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13: 688-694. https://doi.org/10.1038/nm1577
- Saitoh Y, Okayasu H, Xiao L, Harata Y, Miwa N. 2008. Neutral pH hydrogen-enriched electrolyzed water achieves tumor-preferential clonal growth inhibition over normal cells and tumor invasion inhibition concurrently with intracellular oxidant repression. Oncol. Res. 17: 247-255. https://doi.org/10.3727/096504008786991620
- Xia C, Liu W, Zeng D, Zhu L, Sun X, Sun S. 2013. Effect of hydrogen-rich water on oxidative stress, liver function, and viral load in patients with chronic hepatitis B. Clin. Transl. Sci. 6: 372-375. https://doi.org/10.1111/cts.12076
- Sato Y, Kajiyama S, Amano A, Kondo Y, Sasaki T, Handa S, et al. 2008. Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem. Biophys. Res. Commun. 375: 346-350. https://doi.org/10.1016/j.bbrc.2008.08.020
- Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, et al. 2006. Electrochemically controlled formation and growth of hydrogen nanobubbles. Langmuir 22: 8109-8113. https://doi.org/10.1021/la060859f
- Tanaka K, Matsumoto M. 2008. Nano bubble-size dependence of surface tension and inside pressure. Fluid Dynam. Res. 40: 546-553. https://doi.org/10.1016/j.fluiddyn.2007.12.006
- Saitoh Y, Okayasu H, Xiao L, Harata Y, Miwa N. 2008. Neutral pH hydrogen-enriched electrolyzed water achieves tumor-preferential clonal growth inhibition over normal cells and tumor invasion inhibition concurrently with intracellular oxidant repression. Oncol. Res. 17: 247-255. https://doi.org/10.3727/096504008786991620
-
Hashimoto M, Katakura M, Nabika T, Tanabe Y, Hossain S, Tsuchikura S, Shido O. 2011. Effects of hydrogen-rich water on abnormalities in a SHR.Cg-
$Lepr^{cp}$ /NDmcr rat - a metabolic syndrome rat model. Med. Gas Res. 1: 26. https://doi.org/10.1186/2045-9912-1-26
Cited by
- Electrolytically generated hydrogen warm water cleanses the keratin-plug-clogged hair-pores and promotes the capillary blood-streams, more markedly than normal warm water does vol.8, pp.1, 2018, https://doi.org/10.4103/2045-9912.229598
- A Novel Ratiometric Fluorescent Probe for Highly Sensitive and Selective Detection of β‐Galactosidase in Living Cells vol.37, pp.4, 2017, https://doi.org/10.1002/cjoc.201800539
- Supplementation with hydrogen-producing composition confers beneficial effects on physiology and life span in Drosophila vol.5, pp.5, 2017, https://doi.org/10.1016/j.heliyon.2019.e01679
- Hydrogen‐rich water alleviates cyclosporine A‐induced nephrotoxicity via the Keap1/Nrf2 signaling pathway vol.34, pp.5, 2017, https://doi.org/10.1002/jbt.22467
- Role of Molecular Hydrogen in Skin Diseases and its Impact in Beauty vol.26, pp.None, 2017, https://doi.org/10.2174/1381612826666200925124235
- Mechanisms Underlying the Biological Effects of Molecular Hydrogen vol.27, pp.5, 2017, https://doi.org/10.2174/1381612826666201211112846