• Title/Summary/Keyword: Muon

Search Result 19, Processing Time 0.023 seconds

Optimization study of a clustering algorithm for cosmic-ray muon scattering tomography used in fast inspection

  • Hou, Linjun;Huo, Yonggang;Zuo, Wenming;Yao, Qingxu;Yang, Jianqing;Zhang, Quanhu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.208-215
    • /
    • 2021
  • Cosmic-ray muon scattering tomography (MST) technology is a new radiation imaging technology with unique advantages. As the performance of its image reconstruction algorithm has a crucial influence on the imaging quality, researches on this algorithm are of great significance to the development and application of this technology. In this paper, a fast inspection algorithm based on clustering analysis for the identification of the existence of nuclear materials is studied and optimized. Firstly, the principles of MST technology and a binned clustering algorithm were introduced, and then several simulation experiments were carried out using Geant4 toolkit to test the effects of exposure time, algorithm parameter, the size and structure of object on the performance of the algorithm. Based on these, we proposed two optimization methods for the clustering algorithm: the optimization of vertical distance coefficient and the displacement of sub-volumes. Finally, several sets of experiments were designed to validate the optimization effect, and the results showed that these two optimization methods could significantly enhance the distinguishing ability of the algorithm for different materials, help to obtain more details in practical applications, and was therefore of great importance to the development and application of the MST technology.

Resonant Formation Rates of Muonic Molecular ion in Muon-Catalyzed Fusion (뮤온 촉매 핵융합에서 뮤온 분자 이온의 공명 형성율)

  • Im, Ki-Hak;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.63-74
    • /
    • 1992
  • The resonant formation rates of muonic molecular ion dtr in the muon-catalyzed fusion are calculated in various fuel temperatures and densities. The elastic scattering cross sections between t$\mu$ and deuterons are obtained by making use of the partial wave method. The transition property of the excited compound molecule [(dt$\mu$)dee]* derived by the impulse approximation in the form of a bound-state form factor. The radiative, Auger, and collisional deexcitations are considered as the deexcitation mechanisms of the excited dt$\mu$, and each deexcitation width is calculated as well as back decay width. The resultant reaction widths are used to calculate the formation cross sections of resonant dt$\mu$. The resonant formation rates for dt$\mu$-d and dt$\mu$-t collisions are computed as functions of fuel temperature and density. The calculations show that the resonant formation rates increase with fuel densities and have the maximum values at the particular temperatures where the relative collision energies are equal to the resonant ones.

  • PDF

An Embodiment of High Energy Physics Data Grid System (고에너지물리 데이타 그리드 시스템의 구현)

  • Cho Ki-Hyeon;Han Dae-Hee;Kwon Ki-Hwan;Kim Jin-Cheol;Yang Yu-Chul;Oh Young-Do;Kong Dae-Jung;Suh Jun-Suhk;Kim Dong-Hee;Son Dong-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.7
    • /
    • pp.390-398
    • /
    • 2006
  • The objective of the High Energy Physics(HEP) is to understand the basic properties of elementary particles and their interactions. The CMS(Compact Muon Solenoid) experiment at CERN which will produce a few PetaByte of data and the size of collaboration is around 2000 physicists. We cannot process the amount of data by current concept of computing. Therefore, an area of High Energy Physics uses a concept of Tier and Data Grid. We also apply Data Grid to current High Energy Physics experiments. In this paper, we report High Energy Physics Data Grid System as an application of Grid.

Studies on the Root Rot of Ginseng(III) (인삼근부병에 관한 연구 3)

  • 이민웅
    • Korean Journal of Microbiology
    • /
    • v.12 no.4
    • /
    • pp.153-158
    • /
    • 1974
  • Around and in the area of Wolgot-Muon, Gimpo-Gun, Kyunggi province, I examined total bacteria, general Pseudomonas spp., fluorescent Pseudomonas spp., in soil layers and also in different kinds of soil of respective diseased, uncultivated, and healthy areas, and found the followings. 1. In the diseased and uncultivated areas, the content of moisture and silt was greater than in the healthy area. 2. Contrary to the above, the healthy area contained a greater amount of inorganic elements such as $P_2O_5$, K, Ca and of soil particle such as Cs and Fs. The degree of pH and content of Mg were even in three types of soils. 3. Total bacteria were found in abundance in the healthy soil. It was observed that in all types of areas, bacteria reside in abundance in the rhizosphere, i.e., 10-15 cm layers and that the closer the surface, the greater the numbers of the bacteria. 4. General Pseudomonas spp. were also found to the greater in number on the surface of the soil, especially so in the rhizosphere, with the numbers decreasing as the soil layers increase. Numbers of this bacteria in all types of area were nearly uniform. 5. A great number of fluorescent Pseudomonas spp. were found in the diseased area, especially so in the rhizosphere.

  • PDF

Design and fabrication of beam dumps at the µSR facility of RAON for high-energy proton absorption

  • Jae Chang Kim;Jae Young Jeong;Kihong Pak;Yong Hyun Kim;Junesic Park;Ju Hahn Lee;Yong Kyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3692-3699
    • /
    • 2023
  • The Rare isotope Accelerator complex for ON-line experiments in Korea houses several accelerator complexes. Among them, the µSR facility will be initially equipped with a 600 MeV and 100 kW proton beam to generate surface muons, and will be upgraded to 400 kW with the same energy. Accelerated proton beams lose approximately 20% of the power at the target, and the remaining power is concentrated in the beam direction. Therefore, to ensure safe operation of the facility, concentrated protons must be distributed and absorbed at the beam dump. Additionally, effective dose levels must be lower than the legal standard, and the beam dumps used at 100 kW should be reused at 400 kW to minimize the generation of radioactive waste. In this study, we introduce a tailored method for designing beam dumps based on the characteristics of the µSR facility. To optimize the geometry, the absorbed power and effective dose were calculated using the MCNP6 code. The temperature and stress were determined using the ANSYS Mechanical code. Thus, the beam dump design consists of six structures when operated at 100 kW, and a 400 kW beam dump consisting of 24 structures was developed by reusing the 100 kW beam dump.

Search for Dark Photon in e+e- → A'A' Using Future Collider Experiments

  • Kihong Park;Kyungho Kim;Alexei Sytov;Kihyeon Cho
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.259-266
    • /
    • 2023
  • The Standard Model (SM) does not provide an information for 26% of dark matter of the universe. In the dark sector, dark matter is supposed to be linked with the hypothetical particles called dark photons that have similar role to photons in electromagnetic interaction in the SM. Besides astronomical observation, there are studies to find dark matter candidates using accelerators. In this paper, we searched for dark photons using future electron-positron colliders, including Circular Electron Positron Collider (CEPC)/CEPC, Future Circular Collider (FCC-ee)/Innovative Detector for Electron-positron Accelerator (IDEA), and International Linear Collider (ILC)/International Large Detector (ILD). Using the parameterized response of the detector simulation of Delphes, we studied the sensitivity of a double dark photon mode at each accelerator/detector. The signal mode is double dark photon decay channel, e+e- → A'A', where A' (dark photon with spin 1) decaying into a muon pair. We used MadGraph5 to generate Monte Carlo (MC) events by means of a Simplified Model. We found the dark photon mass at which the cross-sections were the highest for each accelerator to obtain the maximum number of events. In this paper we show the expected number of dark photon signal events and the detector efficiency of each accelerator. The results of this study can facilitate in the dark photon search by future electron-positron accelerators.

Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

  • Jeong, Meeyoung;Lee, Kyeong Beom;Kim, Kyeong Ja;Lee, Min-Kie;Han, Ju-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • Odyssey, one of the NASA's Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of $^{40}K$, $^{232}Th$ and $^{238}U$ in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

A Study of Double Dark Photons Produced by Lepton Colliders using High Performance Computing

  • Park, Kihong;Kim, Kyungho;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • The universe is thought to be filled with not only Standard Model (SM) matters but also dark matters. Dark matter is thought to play a major role in its construction. However, the identity of dark matter is as yet unknown, with various search methods from astrophysical observartion to particle collider experiments. Because of the cross-section that is a thousand times smaller than SM particles, dark matter research requires a large amount of data processing. Therefore, optimization and parallelization in High Performance Computing is required. Dark matter in hypothetical hidden sector is though to be connected to dark photons which carries forces similar to photons in electromagnetism. In the recent analysis, it was studied using the decays of a dark photon at collider experiments. Based on this, we studies double dark photon decays at lepton colliders. The signal channels are e+e- → A'A' and e+e- → A'A'γ where dark photon A' decays dimuon. These signal channels are based on the theory that dark photons only decay into heavily charged leptons, which can explain the muon magnetic momentum anomaly. We scanned the cross-section according to the dark photon mass in experiments. MadGraph5 was used to generate events based on a simplified model. Additionally, to get the maximum expected number of events for the double dark photon channel, the detector efficiency for several center of mass (CM) energy were studied using Delphes and MadAnalysis5 for performance comparison. The results of this study will contribute to the search for double dark photon channels at lepton colliders.

A cosmic ray muons tomography system with triangular bar plastic scintillator detectors and improved 3D image reconstruction algorithm: A simulation study

  • Yanwei Zhao;Xujia Luo;Kemian Qin;Guorui Liu;Daiyuan Chen;R.S. Augusto;Weixiong Zhang;Xiaogang Luo;Chunxian Liu;Juntao Liu;Zhiyi Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.681-689
    • /
    • 2023
  • Purpose: Muons are characterized by a strong penetrating ability and can travel through thousands of meters of rock, making them ideal to image large volumes and substances typically impenetrable to, for example, electrons and photons. The feasibility of 3D image reconstruction and material identification based on a cosmic ray muons tomography (MT) system with triangular bar plastic scintillator detectors has been verified in this paper. Our prototype shows potential application value and the authors wish to apply this prototype system to 3D imaging. In addition, an MT experiment with the same detector system is also in progress. Methods: A simulation based on GEANT4 was developed to study cosmic ray muons' physical processes and motion trails. The yield and transportation of optical photons scintillated in each triangular bar of the detector system were reproduced. An image reconstruction algorithm and correction method based on muon scattering, which differs from the conventional PoCA algorithm, has been developed based on simulation data and verified by experimental data. Results: According to the simulation result, the detector system's position resolution is below 1 ~ mm in simulation and 2 mm in the experiment. A relatively legible 3D image of lead bricks in size of 20 cm × 5 cm × 10 cm used our inversion algorithm can be presented below 1× 104 effective events, which takes 16 h of acquisition time experimentally. Conclusion: The proposed method is a potential candidate to monitor the cosmic ray MT accurately. Monte Carlo simulations have been performed to discuss the application of the detector and the simulation results have indicated that the detector can be used in cosmic ray MT. The cosmic ray MT experiment is currently underway. Furthermore, the proposal also has the potential to scan the earth, buildings, and other structures of interest including for instance computerized imaging in an archaeological framework.