DOI QR코드

DOI QR Code

Search for Dark Photon in e+e- → A'A' Using Future Collider Experiments

  • Kihong Park (University of Science and Technology) ;
  • Kyungho Kim (Korea Institute of Science and Technology Information) ;
  • Alexei Sytov (Korea Institute of Science and Technology Information) ;
  • Kihyeon Cho (University of Science and Technology)
  • Received : 2023.10.17
  • Accepted : 2023.11.19
  • Published : 2023.12.15

Abstract

The Standard Model (SM) does not provide an information for 26% of dark matter of the universe. In the dark sector, dark matter is supposed to be linked with the hypothetical particles called dark photons that have similar role to photons in electromagnetic interaction in the SM. Besides astronomical observation, there are studies to find dark matter candidates using accelerators. In this paper, we searched for dark photons using future electron-positron colliders, including Circular Electron Positron Collider (CEPC)/CEPC, Future Circular Collider (FCC-ee)/Innovative Detector for Electron-positron Accelerator (IDEA), and International Linear Collider (ILC)/International Large Detector (ILD). Using the parameterized response of the detector simulation of Delphes, we studied the sensitivity of a double dark photon mode at each accelerator/detector. The signal mode is double dark photon decay channel, e+e- → A'A', where A' (dark photon with spin 1) decaying into a muon pair. We used MadGraph5 to generate Monte Carlo (MC) events by means of a Simplified Model. We found the dark photon mass at which the cross-sections were the highest for each accelerator to obtain the maximum number of events. In this paper we show the expected number of dark photon signal events and the detector efficiency of each accelerator. The results of this study can facilitate in the dark photon search by future electron-positron accelerators.

Keywords

Acknowledgement

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1F1A1064008). This study was also supported by the major institutional R&D program, KISTI (No. K-23-L02-C04-S01) and National Supercomputing Center with supercomputing resources including technical support (KSC-2023-CHA-0005). A. Sytov acknowledges support by the European Commission through the H2020-MSCA-IF TRILLION project (GA. 101032975).

References

  1. Aaij R, Adeva B, Adinolfi M, Ajaltouni Z, Akar S, et al., Search for dark photons produced in 13 TeV pp collisions, Phys. Rev. Lett. 120, 061801 (2018). https://doi.org/10.1103/PhysRevLett.120.061801
  2. Abdallah J, Araujo H, Arbey A, Ashkenazi A, Belyaev A, et al., Simplified models for dark matter searches at the LHC, Phys. Dark Universe 9-10, 8-23 (2015). https://doi.org/10.1016/j.dark.2015.08.001
  3. Alwall J, Frederix R, Frixione S, Hirschi V, Maltoni O, et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07, 79 (2014). https://doi.org/10.1007/JHEP07(2014)079
  4. Brun R, Rademakers F, ROOT: an object oriented data analysis framework, Nucl. Instrum. Methods Phys. Res. Sect. A 389, 81-86 (1997). https://doi.org/10.1016/S0168-9002(97)00048-X
  5. Cho K, e-Science paradigm for astroparticle physics at KISTI, J. Astron. Space Sci. 33, 63-67 (2016). https://doi.org/10.5140/JASS.2016.33.1.63
  6. Cho K, Computational science-based research on dark matter at KISTI, J. Astron. Space Sci. 34, 153-159 (2017). https://doi.org/10.5140/JASS.2017.34.2.153
  7. de Favereau J, Delaere C, Demin P, Giammanco A, Lemaitre V, et al., DELPHES 3: a modular framework for fast simulation of a generic collider experiment, J. High Energy Phys. 2, 57 (2014). https://doi.org/10.1007/JHEP02(2014)057
  8. Delphes (2014) Delphes detector cards [Internet], viewed 2022 Oct 28, available from: https://cp3.irmp.ucl.ac.be/projects/delphes/browser/git/cards
  9. He M, He XG, Huang CK, Li G, Search for a heavy dark photon at future e+e- colliders, J. High Energy Phys. 3, 139 (2018). https://doi.org/10.1007/JHEP03(2018)139
  10. Hearty C, Searches for dark photons at accelerators, J. Phys. Conf. Ser. 2391, 012011 (2022). https://doi.org/10.1088/1742-6596/2391/1/012011
  11. Ilten P, Soreq Y, Thaler J, Williams M, Xue W, Proposed inclusive dark photon search at LHCb, Phys. Rev. Lett. 116, 251803 (2016). https://doi.org/10.1103/PhysRevLett.116.251803
  12. Morgante E, Simplified dark matter models, Adv. High Energy Phys. 2018, 5012043 (2018). https://doi.org/10.1155/2018/5012043
  13. Park J, Chang J, Cheung K, Lee JS, Measuring the trilinear Higgs boson self-coupling at the 100 TeV hadron collider via multivariate analysis, Phys. Rev. D 102, 073002 (2020). https://doi.org/10.1103/PhysRevD.102.073002
  14. Park K, Cho K, A study of dark photon at the electron-positron collider experiments using KISTI-5 supercomputer, J. Astron. Space Sci. 38, 55-63 (2021a). https://doi.org/10.5140/JASS.2021.38.1.55
  15. Park K, Cho K, Study of dark matter at e+e- collider using KISTI-5 supercomputer, Int. J. Contents. 17, 67-73 (2021b). https://doi.org/10.5392/IJoC.2021.17.3.067
  16. Park K, Kim K, Cho K, A study of double dark photons produced by lepton colliders using high performance computing, J. Astron. Space Sci. 39, 1-10 (2022). https://doi.org/10.5140/JASS.2022.39.1.1
  17. Park SH, Kwon YJ, Adachi I, Aihara H, Al Said S, et al., Search for the dark photon in B0 → A'A', A' → e+e-, µ+µ-, and π+π- decays at Belle, J. High Energy Phys. 4, 191 (2021). https://doi.org/10.1007/JHEP04(2021)191
  18. Particle Data Group, Zyla PA, Barnett RM, Beringer J, Dahl O, et al., Review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104
  19. San YC, Perelstein M, Tanedo P, Dark Z at the international linear collider, Phys. Rev. D 106, 015027 (2022). https://doi.org/10.1103/PhysRevD.106.015027
  20. Shuve B, Yavin I, Dark matter progenitor: light vector boson decay into sterile neutrinos, Phys. Rev. D 89, 113004 (2014). https://doi.org/10.1103/PhysRevD.89.113004
  21. Verkerke W, Kirkby D, The RooFit toolkit for data modeling, Proceedings of the Talk from the 2003 Computing in High Energy and Nuclear Physics, La Jolla, CA, USA, 24-28 Mar 2003.
  22. Yeo I, Cho K, Researches on dark matter using e+e- collider, J. Astron. Space Sci. 35, 67-74 (2018). https://doi.org/10.5140/JASS.2018.35.2.67