DOI QR코드

DOI QR Code

Effect of Radiation Pressure Formed at the Inner Region of the Accretion Disk on the Accretion Flow in the Outer Region

  • Hongsu Kim (Center for Theoretical Astronomy, Korea Astronomy and Space Science Institute) ;
  • Uicheol Jang (Astronomy and Space Science Department, Chungnam National University)
  • Received : 2023.10.30
  • Accepted : 2023.11.13
  • Published : 2023.12.15

Abstract

Studying the accretion phenomena provides a window into understanding most heavenly bodies, from the birth of stars to active galactic nuclei (AGN). We would adopt the effect of the radiation pressure, which reduces accretion rates (Ṁ), on the accretion phenomena. The Shakura-Sunyaev α-disk model of disk accretion is a good candidate theory of advection dominated accretion flow (ADAF). Reduction in the angular velocity leads to the suppression the disk luminosity and surface temperature, essentially indicating the transition of the standard accretion disk model from convection dominated accretion flow (CDAF) to ADAF.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF 2022R1A2C1092602).

References

  1. Abramowicz MA, Chen X, Kato S, Lasota JP, Regev O, Thermal equilibria of accretion disks, Astrophys. J. Lett. 438, L37 (1995). https://doi.org/10.1086/187709 
  2. Abramowicz MA, Chen XM, Granath M, Lasota JP. Advection-dominated accretion flows around Kerr black holes, Astrophys. J. 471, 762 (1996) https://doi.org/10.1086/178004 
  3. Abramowicz MA, Czerny B, Lasota JP, Szuszkiewicz E, Slim accretion disks, Astrophys. J. 332, 646-658 (1988). https://doi.org/10.1086/166683 
  4. Abramowicz MA, Lanza A, Percival MJ, Accretion disks around Kerr black holes: vertical equilibrium revisited, Astrophys. J. 479, 179 (1997). https://doi.org/10.1086/303869 
  5. Abramowicz MA, Lasota JP, Spin-up of black holes by thick accretion disks, Acta. Astron. 30, 35-39 (1980). 
  6. Begelman MC, Accretion of γ> 5/3 gas by a schwarzschild black hole, Astron. Astrophys. 70, 583-584 (1978). 
  7. Begelman MC, Meier DL, Thick accretion disks - self-similar, supercritical models, Astrophys. J. 253, 873-896 (1982). https://doi.org/10.1086/159688 
  8. Bondi H, On spherically symmetrical accretion, Mon. Notices Royal Astron. Soc. 112, 195-204 (1952). https://doi.org/10.1093/mnras/112.2.195 
  9. Gammie CF, Popham R, Advection-dominated accretion flows in the kerr metric. i. Basic equations, Astrophys. J. 498, 313 (1998). https://doi.org/10.1086/305521 
  10. Ichimaru S, Magnetohydrodynamic turbulence in disk plasmas and magnetic field fluctuations in the galaxy. Astrophys. J. 208, 701-705 (1976). https://doi.org/10.1086/154652 
  11. Jang U, Kim H, Yi Y, Thick accretion disk and Its super Eddington luminosity around a spinning black hole, J. Astron. Space Sci. 38, 39-44 (2021). https://doi.org/10.5140/JASS.2021.38.1.39 
  12. Jang U, Kim H, The Bardeen-Petterson effect as an observable support for the Blanford-Payne process black hole jet production, J. Korean Phys. Soc. 82, 1018-1021 (2023). https://doi.org/10.1007/s40042-023-00807-9 
  13. Katz JI, X-rays from spherical accretion onto degenerate dwarfs, Astrophys. J. 215, 265-275 (1977). https://doi.org/10.1086/155355 
  14. Lynden-Bell D, Pringle JE, The evolution of viscous discs and the origin of the nebular variables, Mon. Not. R. Astron. Soc. 168, 603-637 (1974). https://doi.org/10.1093/mnras/168.3.603 
  15. Manmoto T, Mineshige S, Kusunose M, Spectrum of optically thin advection-dominated accretion flow around a black hole: application to Sagittarius A, Astrophys. J. 489, 791 (1997). https://doi.org/10.1086/304817 
  16. Manmoto T, Advection-dominated accretion flow around a Kerr black hole, Astrophys. J. 534, 734 (2000). https://doi.org/10.1086/308768 
  17. Narayan R, Garcia MR, McClintock JE, Advection-dominated accretion and black hole event horizons, Astrophys. J. 478, L79 (1997a). https://doi.org/10.1086/310554 
  18. Narayan R, Kato S, Honma F, Global structure and dynamics of advection-dominated accretion flows around black holes, Astrophys. J. 476, 49 (1997b). https://doi.org/10.1086/303591 
  19. Narayan R, McClintock JE, Yi I, A new model for black hole soft X-ray transients in quiescence, Astrophys. J. 457, 821 (1996). https://doi.org/10.1086/176777 
  20. Narayan R, Yi I, Advection-dominated accretion: a self-similar solution, Astrophys. J. Lett. 428, L13 (1994). https://doi.org/10.1086/187381 
  21. Narayan R, Yi I, Advection-dominated accretion: self-similarity and bipolar outflows, Astrophys. J. 444, 231 (1995a). https://doi.org/10.1086/175599 
  22. Narayan R, Yi I, Advection-dominated accretion: underfed black holes and neutron stars, Astrophys. J. 452, 710 (1995b). https://doi.org/10.1086/176343 
  23. Novikov I, Black holes, in Stellar Remnants, eds. Kawaler SD, Novikov I, Srinivasan G (Springer, Berlin, Heidelberg, 1997), 237-334. 
  24. Novikov ID, Thorne KS, Black holes (Les astres occlus), eds. DeWitt C, DeWitt B (Gordon and Breach, NY, 1973), 343-450.
  25. Paczynski B, Bisnovatyi KG, A model of a thin accretion disk around a black hole, Acta Astron. 31, 283 (1981). 
  26. Rees MJ, Begelman MC, Blandford RD, Phinney ES, Ion-supported tori and the origin of radio jets, Nature. 295, 17-21 (1982). https://doi.org/10.1038/295017a0 
  27. Shakura NI, Sunyaev RA, Black holes in binary systems: observational appearance, Symp. Int. Astron. Union. 55, 155-164 (1973). https://doi.org/10.1017/S007418090010035X 
  28. Spruit HC, Matsuda T, Inoue M, Sawada K, Spiral shocks and accretion in discs, Mon. Not. R. Astron. Soc. 229, 517-527 (1987). https://doi.org/10.1093/mnras/229.4.517