• Title/Summary/Keyword: Multivariate process

Search Result 296, Processing Time 0.022 seconds

Non-Invasive Plasma Monitoring Tools and Multivariate Analysis Techniques for Sensitivity Improvement

  • Jang, Haegyu;Lee, Hak-Seung;Lee, Honyoung;Chae, Heeyeop
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.328-339
    • /
    • 2014
  • In this article, plasma monitoring tools and mulivariate analysis techniques were reviewed. Optical emission spectroscopy was reviewed for a chemical composition analysis tool and RF V-I probe for a physical analysis tool for plasma monitoring. Multivariate analysis techniques are discussed to the sensitivity improvement. Principal component analysis (PCA) is one of the widely adopted multivariate analysis techniques and its application to end-point detection of plasma etching process is discussed.

Comparison of EWMA and CUSUM Charts with Variable Sampling Intervals for Monitoring Variance-Covariance Matrix

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.152-157
    • /
    • 2020
  • To monitor all elements simultaneously of variance-covariance matrix Σ of several correlated quality characteristics under multivariate normal process Np($\underline{\mu}$, Σ), multivariate exponentially weighted moving average (EWMA) chart and cumulative sum (CUSUM) chart are considered and compared. Numerical performances of the considered variable sampling interval (VSI) charts are evaluated using average run length (ARL), average time to signal (ATS), average number of switches (ANSW) to signal, and the probability of switch Pr(switch) between two sampling interval d1 and d2 where d1 < d2. For small or moderate changes of Σ, the performances of multivariate EWMA chart is approximately equivalent to that of multivariate CUSUM chart.

Prediction of Flash Point of Binary Systems by Using Multivariate Statistical Analysis (다변량 통계 분석법을 이용한 2성분계 혼합물의 인화점 예측)

  • Lee, Bom-Sock;Kim, S.Y.;Chung, C.B.;Choi, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.29-33
    • /
    • 2006
  • Estimation of process safety is important in the chemical process design. Prediction for flash points of flammable substances used in chemical processes is the one of the methods for estimating process safety. Flash point is the property used to examine the potential for the fire and explosion hazards of flammable substances. In this paper, multivariate statistical analysis methods(partial least squares(PLS) quadratic partial least squares(QPLS)) using experimental data is suggested for predicting flash points of flammable substances of binary systems. The prediction results are compared with the values calculated by laws of Raoult and Van Laar equation.

  • PDF

Bearing fault detection through multiscale wavelet scalogram-based SPC

  • Jung, Uk;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.377-395
    • /
    • 2014
  • Vibration-based fault detection and condition monitoring of rotating machinery, using statistical process control (SPC) combined with statistical pattern recognition methodology, has been widely investigated by many researchers. In particular, the discrete wavelet transform (DWT) is considered as a powerful tool for feature extraction in detecting fault on rotating machinery. Although DWT significantly reduces the dimensionality of the data, the number of retained wavelet features can still be significantly large. Then, the use of standard multivariate SPC techniques is not advised, because the sample covariance matrix is likely to be singular, so that the common multivariate statistics cannot be calculated. Even though many feature-based SPC methods have been introduced to tackle this deficiency, most methods require a parametric distributional assumption that restricts their feasibility to specific problems of process control, and thus limit their application. This study proposes a nonparametric multivariate control chart method, based on multiscale wavelet scalogram (MWS) features, that overcomes the limitation posed by the parametric assumption in existing SPC methods. The presented approach takes advantage of multi-resolution analysis using DWT, and obtains MWS features with significantly low dimensionality. We calculate Hotelling's $T^2$-type monitoring statistic using MWS, which has enough damage-discrimination ability. A bootstrap approach is used to determine the upper control limit of the monitoring statistic, without any distributional assumption. Numerical simulations demonstrate the performance of the proposed control charting method, under various damage-level scenarios for a bearing system.

Data-based On-line Diagnosis Using Multivariate Statistical Techniques (다변량 통계기법을 활용한 데이터기반 실시간 진단)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.538-543
    • /
    • 2016
  • For a good product quality and plant safety, it is necessary to implement the on-line monitoring and diagnosis schemes of industrial processes. Combined with monitoring systems, reliable diagnosis schemes seek to find assignable causes of the process variables responsible for faults or special events in processes. This study deals with the real-time diagnosis of complicated industrial processes from the intelligent use of multivariate statistical techniques. The presented diagnosis scheme consists of a classification-based diagnosis using nonlinear representation and filtering of process data. A case study based on the simulation data was conducted, and the diagnosis results were obtained using different diagnosis schemes. In addition, the choice of future estimation methods was evaluated. The results showed that the performance of the presented scheme outperformed the other schemes.

Identification of the out-of-control variable based on Hotelling's T2 statistic (호텔링 T2의 이상신호 원인 식별)

  • Lee, Sungim
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.811-823
    • /
    • 2018
  • Multivariate control chart based on Hotelling's $T^2$ statistic is a powerful tool in statistical process control for identifying an out-of-control process. It is used to monitor multiple process characteristics simultaneously. Detection of the out-of-control signal with the $T^2$ chart indicates mean vector shifts. However, these multivariate signals make it difficult to interpret the cause of the out-of-control signal. In this paper, we review methods of signal interpretation based on the Mason, Young, and Tracy (MYT) decomposition of the $T^2$ statistic. We also provide an example on how to implement it using R software and demonstrate simulation studies for comparing the performance of these methods.

A multivariate latent class profile analysis for longitudinal data with a latent group variable

  • Lee, Jung Wun;Chung, Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.15-35
    • /
    • 2020
  • In research on behavioral studies, significant attention has been paid to the stage-sequential process for multiple latent class variables. We now explore the stage-sequential process of multiple latent class variables using the multivariate latent class profile analysis (MLCPA). A latent profile variable, representing the stage-sequential process in MLCPA, is formed by a set of repeatedly measured categorical response variables. This paper proposes the extended MLCPA in order to explain an association between the latent profile variable and the latent group variable as a form of a two-dimensional contingency table. We applied the extended MLCPA to the National Longitudinal Survey on Youth 1997 (NLSY97) data to investigate the association between of developmental progression of depression and substance use behaviors among adolescents who experienced Authoritarian parental styles in their youth.

Application of Sensor Network Using Multivariate Gaussian Function to Hand Gesture Recognition (Multivariate Gaussian 함수를 이용한 센서 네트워크의 수화 인식에의 적용)

  • Kim Sung-Ho;Han Yun-Jong;Bogdana Diaconescu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.991-995
    • /
    • 2005
  • Sensor networks are the results of convergence of very important technologies such as wireless communication and micro electromechanical systems. In recent years, sensor networks found a wide applicability in various fields such as health, environment and habitat monitoring, military, etc. A very important step for these many applications is pattern classification and recognition of data collected by sensors installed or deployed in different ways. But, pattern classification and recognition are sometimes difficult to perform. Systematic approach to pattern classification based on modern teaming techniques like Multivariate Gaussian mixture models, can greatly simplify the process of developing and implementing real-time classification models. This paper proposes a new recognition system which is hierarchically composed of many sensor nodes haying the capability of simple processing and wireless communication. The proposed system is able to perform classification of sensed data using the Multivariate Gaussian function. In order to verify the usefulness of the proposed system, it was applied to hand gesture recognition system.

Abnormality Detection to Non-linear Multivariate Process Using Supervised Learning Methods (지도학습기법을 이용한 비선형 다변량 공정의 비정상 상태 탐지)

  • Son, Young-Tae;Yun, Deok-Kyun
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Principal Component Analysis (PCA) reduces the dimensionality of the process by creating a new set of variables, Principal components (PCs), which attempt to reflect the true underlying process dimension. However, for highly nonlinear processes, this form of monitoring may not be efficient since the process dimensionality can't be represented by a small number of PCs. Examples include the process of semiconductors, pharmaceuticals and chemicals. Nonlinear correlated process variables can be reduced to a set of nonlinear principal components, through the application of Kernel Principal Component Analysis (KPCA). Support Vector Data Description (SVDD) which has roots in a supervised learning theory is a training algorithm based on structural risk minimization. Its control limit does not depend on the distribution, but adapts to the real data. So, in this paper proposes a non-linear process monitoring technique based on supervised learning methods and KPCA. Through simulated examples, it has been shown that the proposed monitoring chart is more effective than $T^2$ chart for nonlinear processes.

PROCESS ANALYSIS OF AUTOMOTIVE PARTS USING GRAPHICAL MODELLING

  • IRIKURA Norio;KUZUYA Kazuyoshi;NISHINA Ken
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.295-300
    • /
    • 1998
  • Recently graphical modelling is being studied as a useful process analysis tool for exploratory causal analysis. Graphical modelling is a presentation method that uses graphs to describe statistical models of the structures of multivariate data. This paper describes an application of this graphical modeling with two cases from the automotive parts industry. One case is the unbalance problem of the pulley, an automotive generator part. There is multivariate data of the product from each of the processes which are connected in the series. By means of exploratory causal analysis between the variables using graphical modeling, the key processes which causes the variation of the final characteristics and their mechanism of the causal relationship have become clear. Another case is, also, the unbalanced problem of automotive starter parts which consists of many parts and is manufactured by complex machinery and assembling process. By means of the similar technique, the key processes are obtained easily and the results are reasonable from technical knowledge.

  • PDF