• 제목/요약/키워드: Multivariate growth curve model

Search Result 5, Processing Time 0.444 seconds

Bayesian Hypothesis Testing in Multivariate Growth Curve Model.

  • Kim, Hea-Jung;Lee, Seung-Joo
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.1
    • /
    • pp.81-94
    • /
    • 1996
  • This paper suggests a new criterion for testing the general linear hypothesis about coefficients in multivariate growth curve model. It is developed from a Bayesian point of view using the highest posterior density region methodology. Likelihood ratio test criterion(LRTC) by Khatri(1966) results as an approximate special case. It is shown that under the simple case of vague prior distribution for the multivariate normal parameters a LRTC-like criterion results; but the degrees of freedom are lower, so the suggested test criterion yields more conservative test than is warranted by the classical LRTC, a result analogous to that of Berger and Sellke(1987). Moreover, more general(non-vague) prior distributions will generate a richer class of tests than were previously available.

  • PDF

Bivariate regional frequency analysis of extreme rainfalls in Korea (이변량 지역빈도해석을 이용한 우리나라 극한 강우 분석)

  • Shin, Ju-Young;Jeong, Changsam;Ahn, Hyunjun;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.747-759
    • /
    • 2018
  • Multivariate regional frequency analysis has advantages of regional and multivariate framework as adopting a large number of regional dataset and modeling phenomena that cannot be considered in the univariate frequency analysis. To the best of our knowledge, the multivariate regional frequency analysis has not been employed for hydrological variables in South Korea. Applicability of the multivariate regional frequency analysis should be investigated for the hydrological variable in South Korea in order to improve our capacity to model the hydrological variables. The current study focused on estimating parameters of regional copula and regional marginal models, selecting the most appropriate distribution models, and estimating regional multivariate growth curve in the multivariate regional frequency analysis. Annual maximum rainfall and duration data observed at 71 stations were used for the analysis. The results of the current study indicate that Frank and Gumbel copula models were selected as the most appropriate regional copula models for the employed regions. Several distributions, e.g. Gumbel and log-normal, were the representative regional marginal models. Based on relative root mean square error of the quantile growth curves, the multivariate regional frequency analysis provided more stable and accurate quantiles than the multivariate at-site frequency analysis, especially for long return periods. Application of regional frequency analysis in bivariate rainfall-duration analysis can provide more stable quantile estimation for hydraulic infrastructure design criteria and accurate modelling of rainfall-duration relationship.

A Comparative Study on Prediction Performance of the Bankruptcy Prediction Models for General Contractors in Korea Construction Industry

  • Seung-Kyu Yoo;Jae-Kyu Choi;Ju-Hyung Kim;Jae-Jun Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.432-438
    • /
    • 2011
  • The purpose of the present thesis is to develop bankruptcy prediction models capable of being applied to the Korean construction industry and to deduce an optimal model through comparative evaluation of final developed models. A study population was selected as general contractors in the Korean construction industry. In order to ease the sample securing and reliability of data, it was limited to general contractors receiving external audit from the government. The study samples are divided into a bankrupt company group and a non-bankrupt company group. The bankruptcy, insolvency, declaration of insolvency, workout and corporate reorganization were used as selection criteria of a bankrupt company. A company that is not included in the selection criteria of the bankrupt company group was selected as a non-bankrupt company. Accordingly, the study sample is composed of a total of 112 samples and is composed of 48 bankrupt companies and 64 non-bankrupt companies. A financial ratio was used as early predictors for development of an estimation model. A total of 90 financial ratios were used and were divided into growth, profitability, productivity and added value. The MDA (Multivariate Discriminant Analysis) model and BLRA (Binary Logistic Regression Analysis) model were used for development of bankruptcy prediction models. The MDA model is an analysis method often used in the past bankruptcy prediction literature, and the BLRA is an analysis method capable of avoiding equal variance assumption. The stepwise (MDA) and forward stepwise method (BLRA) were used for selection of predictor variables in case of model construction. Twenty two variables were finally used in MDA and BLRA models according to timing of bankruptcy. The ROC-Curve Analysis and Classification Analysis were used for analysis of prediction performance of estimation models. The correct classification rate of an individual bankruptcy prediction model is as follows: 1) one year ago before the event of bankruptcy (MDA: 83.04%, BLRA: 93.75%); 2) two years ago before the event of bankruptcy (MDA: 77.68%, BLRA: 78.57%); 3) 3 years ago before the event of bankruptcy (MDA: 84.82%, BLRA: 91.96%). The AUC (Area Under Curve) of an individual bankruptcy prediction model is as follows. : 1) one year ago before the event of bankruptcy (MDA: 0.933, BLRA: 0.978); 2) two years ago before the event of bankruptcy (MDA: 0.852, BLRA: 0.875); 3) 3 years ago before the event of bankruptcy (MDA: 0.938, BLRA: 0.975). As a result of the present research, accuracy of the BLRA model is higher than the MDA model and its prediction performance is improved.

  • PDF

Carbon dioxide emissions, GDP per capita, industrialization and population: An evidence from Rwanda

  • Asumadu-Sarkodie, Samuel;Owusu, Phebe Asantewaa
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.116-124
    • /
    • 2017
  • The study makes an attempt to investigate the causal nexus between carbon dioxide emissions, GDP per capita, industrialization and population with an evidence from Rwanda by employing a time series data spanning from 1965 to 2011 using the autoregressive distributed lag model. Evidence from the study shows that carbon dioxide emissions, GDP per capita, industrialization and population are co-integrated and have a long-run equilibrium relationship. Evidence from the Granger-causality shows a unidirectional causality running from industrialization to GDP per capita, population to carbon dioxide emissions, population to GDP per capita and population to industrialization. Evidence from the long-run elasticities has policy implications for Rwanda; a 1% increase in GDP per capita will decrease carbon dioxide emissions by 1.45%, while a 1% increase in industrialization will increase carbon dioxide emissions by 1.64% in the long-run. Increasing economic growth in Rwanda will therefore reduce environmental pollution in the long-run which appears to support the validity of the environmental Kuznets curve hypothesis. However, industrialization leads to more emissions of carbon dioxide, which reduces environment, health and air quality. It is noteworthy that the Rwandan Government promotes sustainable industrialization, which improves the use of clean and environmentally sound raw materials, industrial process and technologies.

Predicting Successful Conservative Surgery after Neoadjuvant Chemotherapy in Hormone Receptor-Positive, HER2-Negative Breast Cancer

  • Ko, Chang Seok;Kim, Kyu Min;Lee, Jong Won;Lee, Han Shin;Lee, Sae Byul;Sohn, Guiyun;Kim, Jisun;Kim, Hee Jeong;Chung, Il Yong;Ko, Beom Seok;Son, Byung Ho;Ahn, Seung Do;Kim, Sung-Bae;Kim, Hak Hee;Ahn, Sei Hyun
    • Journal of Breast Disease
    • /
    • v.6 no.2
    • /
    • pp.52-59
    • /
    • 2018
  • Purpose: This study aimed to determine whether clinicopathological factors are potentially associated with successful breast-conserving surgery (BCS) after neoadjuvant chemotherapy (NAC) and develop a nomogram for predicting successful BCS candidates, focusing on those who are diagnosed with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative tumors during the pre-NAC period. Methods: The training cohort included 239 patients with an HR-positive, HER2-negative tumor (${\geq}3cm$), and all of these patients had received NAC. Patients were excluded if they met any of the following criteria: diffuse, suspicious, malignant microcalcification (extent >4 cm); multicentric or multifocal breast cancer; inflammatory breast cancer; distant metastases at the time of diagnosis; excisional biopsy prior to NAC; and bilateral breast cancer. Multivariate logistic regression analysis was conducted to evaluate the possible predictors of BCS eligibility after NAC, and the regression model was used to develop the predicting nomogram. This nomogram was built using the training cohort (n=239) and was later validated with an independent validation cohort (n=123). Results: Small tumor size (p<0.001) at initial diagnosis, long distance from the nipple (p=0.002), high body mass index (p=0.001), and weak positivity for progesterone receptor (p=0.037) were found to be four independent predictors of an increased probability of BCS after NAC; further, these variables were used as covariates in developing the nomogram. For the training and validation cohorts, the areas under the receiver operating characteristic curve were 0.833 and 0.786, respectively; these values demonstrate the potential predictive power of this nomogram. Conclusion: This study established a new nomogram to predict successful BCS in patients with HR-positive, HER2-negative breast cancer. Given that chemotherapy is an option with unreliable outcomes for this subtype, this nomogram may be used to select patients for NAC followed by successful BCS.