Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.1568-1572
/
2007
지역빈도해석은 우리나라와 같이 자료 기간이 짧은 경우 지점빈도해석보다 더 정확한 확률강우량을 산정할 수 있는 기법이다. 지역빈도해석을 통한 확률강우량 산정 결과는 수문학적으로 동질한 지역의 구분 결과에 따라 달라진다. 지역을 구분할 때에는 강우에 영향을 미치는 다양한 변수들이 사용될 수 있다. 변수의 유형과 개수가 지역 구분의 효율성을 좌우하기 때문에 활용 가능한 모든 변수들의 정보를 요약할 수 있는 변수들을 선택하는 것이 지역 구분의 효율성 면에서 유리하다고 할 수 있다. 이런 면에서 지역 구분의 효율성을 증대시킬 목적으로 다변량 분석 기법이 활용될 수 있다. 본 연구에서는 주성분 분석, 요인 분석, Procrustes analysis와 같은 다변량 분석 기법을 활용하여 42개의 강우 관련 변수들을 33개의 변수로 줄일 수 있었다. 분석 결과 변수 개수 감소로 인한 정보 손실은 크지 않은 것으로 나타났다. 따라서 이러한 기법에 의한 변수 차원의 축소는 지역 구분의 효율성 향상에 기여할 수 있는 것으로 판단된다. 선정된 변수들을 바탕으로 군집해석을 수행하여 지역을 구분하였고, L-모멘트에 근거한 이질성척도(H)를 활용하여 구분된 지역의 동질성을 검토하였다. 또한 L-모멘트에 근거한 적합성 척도(Z)를 적용하여 구분된 지역에 적합한 확률분포형을 선정하였고, 선정된 적정 확률분포형을 바탕으로 각 지역에 대한 성장 곡선(growth curve)을 유도하였다.
TO, Tha Hien;DO, Du Kim;BUI, Lan Thi Hoang;PHAM, Huong Thi Lan
The Journal of Asian Finance, Economics and Business
/
v.7
no.10
/
pp.267-273
/
2020
With the strong growth of social networking sites such as Facebook in recent years, the potential of exploiting customers on Facebook is increasing. Presently, trading activities on Facebook is rapidly developing. Therefore, businesses have become increasingly competitive when selling products on Facebook, so as to retain customers as well as to satisfy customer, which is of paramount importance. This study was conducted to assess the factors affecting the satisfaction of individual customers in Vietnam when buying goods on Facebook. This study uses multivariate analysis techniques (Confirmatory Factor Analysis, Structural Equation Modeling) to determine the factors affecting customer satisfaction when buying goods on Facebook. Research results from 268 individual customers in Vietnam indicated trust and convenience are the two important factors related to customer satisfaction when buying goods on Facebook. Customer satisfaction is the result of consumer experience throughout the different stages of purchase. The more the shopping experience, the more the customers are satisfied when buying products. The price and products do not affect customer satisfaction (prices are easy to compare and products are easily understood on the Internet; hence, these two factors are not considered as determinants of customer satisfaction). Furthermore, this study provides recommendations to improve customer satisfaction.
Thirty-nine samples of roasted sesame seed oils were sensorially evaluated in terms of nutty odor, burnt odor and overall desirability, and their volatile compounds quantitatively analysed using direct sampling capillary GLC. Five volatile compounds were appeared to be significant for the sensory Properties of sesame oils through the multivariate analytical techniques such as stepwise discriminant analysis. canonical discriminant analysis, discriminant analysis and principal component analysis. The most important compounds were 2,5-dimethylpyrazine and 2-methylpyrazine which could be effectively used as chemical indicators related to nutty and burnt odor of sesame oils, respectively. The sesame oils which have represented a good grade of overall desirability have been always kept $35.82{\sim}4.43$ ppm of 2,5-dimethylpyrazine and also $28.90{\sim}6.35$ ppm of 2-methylpyrazine.
Objective: The aim of this study is to develop a distributed representative human model(DRHM) generation and analysis system. Background: DRHMs are used for a product with multiple-size categories such as clothing and shoes. It is not easy for a product designer to explore an optimal sizing system by applying various distributed methods because of their complexity and time demand. Method: Studies related to DRHM generation were reviewed and the RHM generation interfaces of three digital human model simulation systems(Jack$^{(R)}$, RAMSIS$^{(R)}$, and CATIA Human$^{(R)}$) were reviewed. Results: DRHM generation steps are implemented by providing sophisticated interfaces which offer various statistical techniques and visualization methods with ease. Conclusion: The DRHM system can analyze the multivariate accommodation percentage of a sizing system, provide body sizes of generated DRHMs, and visualize generated grids and DRHMs. Application: The DRHM generation and analysis system can be of great use to determine an optimal sizing system for a multiple-size product by comparing various sizing system candidates.
Purpose: Covid-19 has caused an unprecedented situation for the tourism industry with slumping demand during the outbreak and many uncertainties about tourist behavior in the post-pandemic. This study is aimed to discover the distribution in the behavior of tourists in Vietnam, whose government has taken serious and early actions towards the health crisis and among the earliest to reopen the economy. Research design, data, and methodology: We adopted a mixed-method approach - combining qualitative interviews with quantitative research using a questionnaire survey. Through the form of the online survey through social networking channels: Facebook, Gmail. The study received 261 valid responses for analysis. Multivariate analysis techniques were used: descriptive statistics, exploratory factor analysis (EFA). Results: From the data and result of EFA, the result showed that the distribution of tourist behavior could be grouped into four main factors, including (1) the general impacts, (2) travel-related behaviors; (3) attitudes and preferences regarding modes of tours and destinations; (4) awareness of safety and hygiene. Conclusions: These results highlighted the importance of the theory of perceived risks in explaining the travelers' prudent decisions. In addition, this study provides practical implications for policymakers and various stakeholders of Vietnam's tourism industry in formulating the recovery strategy.
The Journal of Asian Finance, Economics and Business
/
v.8
no.5
/
pp.221-229
/
2021
This study aims to forecast the exchange rate of the Chinese Yuan against the US Dollar by a combination of different models as proposed by Poon and Granger (2003) during the Covid-19 pandemic. For this purpose, we include three uni-variate time series models, i.e., ARIMA, Naïve, Exponential smoothing, and one multivariate model, i.e., NARDL. This is the first of its kind endeavor to combine univariate models along with NARDL to the best of our knowledge. Utilizing monthly data from January 2011 to December 2020, we predict the Chinese Yuan against the US dollar by two combination criteria i.e. var-cor and equal weightage. After finding out the individual accuracy, the models are then assessed through equal weightage and var-cor methods. Our results suggest that Naïve outperforms all individual & combination of time series models. Similarly, the combination of NARDL and Naïve model again outperformed all of the individual as well as combined models except the Naïve model, with the lowest MAPE value of 0764. The results suggesting that the Chinese Yuan exchange rate against the US Dollar is dependent upon the recent observations of the time series. Further evidence shows that the combination of models plays a vital role in forecasting which commensurate with the literature.
The Journal of Asian Finance, Economics and Business
/
v.8
no.4
/
pp.339-347
/
2021
This study aims to forecast the exchange rate by a combination of different models as proposed by Poon and Granger (2003). For this purpose, we include three univariate time series models, i.e., ARIMA, Naïve, Exponential smoothing, and one multivariate model, i.e., NARDL. This is the first of its kind endeavor to combine univariate models along with NARDL to the best of our knowledge. Utilizing monthly data from January 2011 to December 2020, we predict the Pakistani Rupee against the US dollar by a combination of different forecasting techniques. The observations from M1 2020 to M12 2020 are held back for in-sample forecasting. The models are then assessed through equal weightage and var-cor methods. Our results suggest that NARDL outperforms all individual time series models in terms of forecasting the exchange rate. Similarly, the combination of NARDL and Naïve model again outperformed all of the individual as well as combined models with the lowest MAPE value of 0.612 suggesting that the Pakistani Rupee exchange rate against the US Dollar is dependent upon the macro-economic fundamentals and recent observations of the time series. Further evidence shows that the combination of models plays a vital role in forecasting, as stated by Poon and Granger (2003).
The Journal of Asian Finance, Economics and Business
/
v.8
no.8
/
pp.387-397
/
2021
The object of this article is to assess the factors affecting the behavioral intention of young retail customers to use digital banking services in Vietnam. In this article, multivariate data analysis techniques including Cronbach's Alpha, Exploratory factor analysis (EFA), Confirmatory factor analysis (CFA), Structure equation model (SEM), and Bootstrapping are used to analyze the data collected from 525 young respondents under the age of 35 who are using or having opportunities to experience digital banking services. The people taking part in the survey were mainly University students with incomes of most of them under VND 5 million. The result from the analysis illustrates that (1) perceived ease of use positively affects intention to use, (2) social influence positively impacts intention to use, and (3) customer support has a positive impact on the intention of young people to use digital banking services. While technology self-efficacy, convenience, and perceived security were found to have an impact on intention to use services in former studies, the influences of these factors on intention to use digital banking services are found insignificant in this research. From these results, the author provides implications for commercial banks to increase the intention to use digital banking of young people in Vietnam.
In recent years, the air pollution and Air Quality Index (AQI) has been a pivotal point for researchers due to its effect on human health. Various research has been done in predicting the AQI but most of these studies, either lack dense temporal data or cover one or two air pollutant elements. In this paper, a hybrid Convolutional Neural approach integrated with recurrent neural network architecture (CNN-LSTM), is presented to find air pollution inference using a multivariate air pollutant elements dataset. The aim of this research is to design a robust and real-time air pollutant forecasting system by exploiting a neural network. The proposed approach is implemented on a 24-month dataset from Seoul, Republic of Korea. The predicted results are cross-validated with the real dataset and compared with the state-of-the-art techniques to evaluate its robustness and performance. The proposed model outperforms SVM, SVM-Polynomial, ANN, and RF models with 60.17%, 68.99%, 14.6%, and 6.29%, respectively. The model performs SVM and SVM-Polynomial in predicting O3 by 78.04% and 83.79%, respectively. Overall performance of the model is measured in terms of Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and the Root Mean Square Error (RMSE).
The correct situation awareness (SA) of operators is important for managing nuclear power plants (NPPs), particularly in accident-related situations. Among the three levels of SA suggested by Ensley, Level 3 SA (i.e., projection of the future status of the situation) is challenging because of the complexity of NPPs as well as the uncertainty of accidents. Hence, several prediction methods using artificial intelligence techniques have been proposed to assist operators in accident prediction. However, these methods only predict short-term plant status (e.g., the status after a few minutes) and do not provide information regarding the uncertainty associated with the prediction. This paper proposes an algorithm that can predict the multivariate and long-term behavior of plant parameters for 2 h with 120 steps and provide the uncertainty of the prediction. The algorithm applies bidirectional long short-term memory and an attention mechanism, which enable the algorithm to predict the precise long-term trends of the parameters with high prediction accuracy. A conditional variational autoencoder was used to provide uncertainty information about the network prediction. The algorithm was trained, optimized, and validated using a compact nuclear simulator for a Westinghouse 900 MWe NPP.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.