• 제목/요약/키워드: Multivariate GARCH

검색결과 34건 처리시간 0.025초

금융시계열 분석을 위한 다변량-GARCH 모형에서 비대칭-CCC의 도입 및 응용 (Asymmetric CCC Modelling in Multivariate-GARCH with Illustrations of Multivariate Financial Data)

  • 박란희;최문선;황선
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.821-831
    • /
    • 2011
  • 다변량-GARCH 분야에서 비대칭모형에 대한 연구는 상대적으로 미진하다 (McAleer 등, 2009). 본 논문에서는 다변량-GARCH 시계열에서 비대칭 모형과 상수 조건부 상관모형(CCC)을 도입하여 모델링하는 방법론에 대해 연구하고 있다. 다변량 비대칭 변동성 모형 적합 방법을 실용적으로 소개하고 있으며 이를 이용하여 국내 다변량 시계열 분석을 상세히 예시하였다.

다변량 고빈도 금융시계열의 변동성 분석 (Multivariate volatility for high-frequency financial series)

  • 이근주;황선영
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.169-180
    • /
    • 2017
  • 본 논문은 다변량 변동성을 다루고 있다. 최근 들어 활발하게 연구가 되고 있는 고빈도(high frequency)자료에 기초한 변동성 측정방법인 실현변동성을 계산하고 기존의 다변량 GARCH 모형과 비교분석하였다. 정준상관분석과 VaR분석을 이용하여 실현변동성과 다양한 다변량 GARCH 모형을 비교하였으며 최근 6년 동안의 삼성전자/현대차 거래 가격 고빈도 데이터를 이용하여 실증분석을 실시하였다.

리스크 관리 측면에서 살펴본 다변량 GARCH 모형 선택 (On multivariate GARCH model selection based on risk management)

  • 박세린;백창룡
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1333-1343
    • /
    • 2014
  • 본 연구는 일변량 금융지수의 변동성 모형에서 GARCH(1,1) 모형이 여러 복잡한 GARCH 확장 모형에 비교해서 결코 뒤쳐지지 않는다는 Hansen과 Lunde (2005) 연구를 다변량 변동성으로 확장한다. 또한 모형의 비교 방법으로 예측값에 기반한 평균제곱예측오차 (MSPE) 뿐 만 아니라 리스크 관리 측면에서 최대 손실 금액을 나타내는 VaR 및 사후 검정인 실패율을 동시에 고려하였다. 모의실험 결과 다변량 변동성의 경우에서도 GARCH 모형이 예측력은 크게 다르지는 않았으나 리스크 관리 측면에서는 좀 더 신중한 판단을 요구함을 보인다. 또한 최근 10년동안의 KOSPI, NASDAQ 및 HANG SENG의 주가 지수 실증 자료를 통하여 리스크 관리 측면에서의 다변량 GARCH 모형 선택에 대해서 논의한다.

DCC 모델링을 이용한 다변량-GARCH 모형의 분석 및 응용 (Analysis of Multivariate-GARCH via DCC Modelling)

  • 최성미;홍선영;최문선;박진아;백지선;황선영
    • 응용통계연구
    • /
    • 제22권5호
    • /
    • pp.995-1005
    • /
    • 2009
  • 금융 시계열 자료들 간의 상관계수는 자산의 배분, 위험관리 그리고 포트폴리오의 선택에 있어서 중요한 역할을 한다. 이러한 상관계수들을 모형화하기 위해 단변량-GARCH 모형을 다변량-GARCH 모형으로 확장시킨 MGARCH류 모형들에 대한 많은 연구들이 진행되고 있다. 특히, CCC 모형 (Bollerslev, 1990)과 DCC 모형 (Engle, 2002)은 다른 모형들에 비해 추정해야 할 모수의 수가 작다는 이점으로 인해 분석에 널리 쓰이고 있다. 본 논문에서는 국내 주가자료에 대해 CCC 모형과 DCC 모형을 적합시킨 후, 각 모형들에 대한 VaR(value at risk)와 사후검증(back-testing), 결합예측영역(joint prediction region) 등을 통하여 두 모형의 예측 능력을 비교해 보고자 한다.

A Multivariate GARCH Analysis on International Stock Market Integration: Korean Market Case

  • Kim, Namhyoung
    • Management Science and Financial Engineering
    • /
    • 제21권1호
    • /
    • pp.31-39
    • /
    • 2015
  • Financial integration is a phenomenon in which global financial markets are closely connected with each other. This article investigates the integration of Korean stock market with other stock markets using a multivariate GARCH analysis. We chose total seven countries including Korea for this paper based on the amount of export and then we chose major stock indices which can be thought as representative stock markets of those countries. The empirical analysis has shown that countries' financial integration.

Volatility for High Frequency Time Series Toward fGARCH(1,1) as a Functional Model

  • Hwang, Sun Young;Yoon, Jae Eun
    • Quantitative Bio-Science
    • /
    • 제37권2호
    • /
    • pp.73-79
    • /
    • 2018
  • As high frequency (HF, for short) time series is now prevalent in the presence of real time big data, volatility computations based on traditional ARCH/GARCH models need to be further developed to suit the high frequency characteristics. This article reviews realized volatilities (RV) and multivariate GARCH (MGARCH) to deal with high frequency volatility computations. As a (functional) infinite dimensional models, the fARCH and fGARCH are introduced to accommodate ultra high frequency (UHF) volatilities. The fARCH and fGARCH models are developed in the recent literature by Hormann et al. [1] and Aue et al. [2], respectively, and our discussions are mainly based on these two key articles. Real data applications to domestic UHF financial time series are illustrated.

Multivariate GARCH and Its Application to Bivariate Time Series

  • Choi, M.S.;Park, J.A.;Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.915-925
    • /
    • 2007
  • Multivariate GARCH has been useful to model dynamic relationships between volatilities arising from each component series of multivariate time series. Methodologies including EWMA(Exponentially weighted moving-average model), DVEC(Diagonal VEC model), BEKK and CCC(Constant conditional correlation model) models are comparatively reviewed for bivariate time series. In addition, these models are applied to evaluate VaR(Value at Risk) and to construct joint prediction region. To illustrate, bivariate stock prices data consisting of Samsung Electronics and LG Electronics are analysed.

  • PDF

함수적 변동성 fGARCH(1, 1)모형을 통한 초고빈도 시계열 변동성 (The fGARCH(1, 1) as a functional volatility measure of ultra high frequency time series)

  • 윤재은;김종민;황선영
    • 응용통계연구
    • /
    • 제31권5호
    • /
    • pp.667-675
    • /
    • 2018
  • 초고빈도(ultra high frequency; UHF)시계열의 함수적 변동성 측정을 위한 최신 기법인 함수적 변동성 functional GARCH : fGARCH(1, 1) 모형을 소개하고 설명하였다. 실증분석을 위해 R-code fGARCH(1, 1) 프로그램을 KOSPI/현대차 초고빈도 수익률 자료에 적합하여 예시하였다.

다변량 GARCH 모형의 CCC 및 ECCC 비교분석 (Extended Constant Conditional Correlation (ECCC) Model for Multivariate GARCH Time Series: an Illustration)

  • 이승연;황선영
    • 응용통계연구
    • /
    • 제27권7호
    • /
    • pp.1219-1228
    • /
    • 2014
  • 다변량 금융시계열 분석모형인 상수조건부상관(CCC)에 대해 알아보았으며, 개개 변동성간의 상호작용을 함께 고려한 확장된 상수조건부상관(ECCC)을 소개하고 국내 금융시계열에 적용하였다. 다양한 이변량 수익률 자료를 통해 CCC와 ECCC를 비교분석하였다.

A rolling analysis on the prediction of value at risk with multivariate GARCH and copula

  • Bai, Yang;Dang, Yibo;Park, Cheolwoo;Lee, Taewook
    • Communications for Statistical Applications and Methods
    • /
    • 제25권6호
    • /
    • pp.605-618
    • /
    • 2018
  • Risk management has been a crucial part of the daily operations of the financial industry over the past two decades. Value at Risk (VaR), a quantitative measure introduced by JP Morgan in 1995, is the most popular and simplest quantitative measure of risk. VaR has been widely applied to the risk evaluation over all types of financial activities, including portfolio management and asset allocation. This paper uses the implementations of multivariate GARCH models and copula methods to illustrate the performance of a one-day-ahead VaR prediction modeling process for high-dimensional portfolios. Many factors, such as the interaction among included assets, are included in the modeling process. Additionally, empirical data analyses and backtesting results are demonstrated through a rolling analysis, which help capture the instability of parameter estimates. We find that our way of modeling is relatively robust and flexible.