International Journal of Fuzzy Logic and Intelligent Systems
/
v.4
no.1
/
pp.63-69
/
2004
In this paper, we propose a general framework for sensor data fusion applied to control systems. Since many kinds of disturbances are introduced to a control system, it is necessary to rely on multisensor data fusion to improve control performance in spite of the disturbances. Multisensor data fusion for a control system is considered a sequence of making decisions for a combination of sensor data to make a proper control input in uncertain conditions of disturbance effects on sensors. The proposed method is applied to a typical control system of a flexible link system in which reduction of oscillation is obtained using a photo sensor at the tip of the link. But the control performance depends heavily on the environmental light conditions. To overcome the light disturbance difficulties, an accelerometer is used in addition to the existing photo sensor. Improvement of control performance is possible by utilizing multisensor data fusion for various output responses to show the feasibility of the proposed method in this paper.
The objective of this paper is to survey the state of the art of multisensor data fusion in intelligent robot systems. The variety of approaches to the problem of multisensor fusion ranging from general frameworks to robotic applications is surveyed. We have classified them into three categories : sensor modeling, fusional methods, and robotic applications. Also we present research trend and future direction of multisensor fusion.
This study proposed two multisensor fusion methods for segment-based image classification utilizing a region-growing segmentation. The proposed algorithms employ a Gaussian-PDF measure and an evidential measure respectively. In remote sensing application, segment-based approaches are used to extract more explicit information on spatial structure compared to pixel-based methods. Data from a single sensor may be insufficient to provide accurate description of a ground scene in image classification. Due to the redundant and complementary nature of multisensor data, a combination of information from multiple sensors can make reduce classification error rate. The Gaussian-PDF method defines a regional measure as the PDF average of pixels belonging to the region, and assigns a region into a class associated with the maximum of regional measure. The evidential fusion method uses two measures of plausibility and belief, which are derived from a mass function of the Beta distribution for the basic probability assignment of every hypothesis about region classes. The proposed methods were applied to the SPOT XS and ENVISAT data, which were acquired over Iksan area of of Korean peninsula. The experiment results showed that the segment-based method of evidential measure is greatly effective on improving the classification via multisensor fusion.
This paper introduces a new methodology for multisensor data fusion. The method makes use of fuzzy techniques and possibility distribution as a fuzzy restriction which acts as an elastic constraint on the values that may be assigned to a variable. We propose a simple sensor fuzzy modeling method which can be used for cluster validity analysis. As a result, the feasibility of these multisensor data fusion modules is demonstrated by computer simulation applicable to the problem of object identification.
Journal of Advanced Marine Engineering and Technology
/
v.24
no.1
/
pp.119-126
/
2000
In constructing the positioning system based on a conventional dead-reckoning for a wheeled vehicle with pneumatic tires, the position estimation error is inevitable as changes of the radius of the wheels depend on live load and variable enviroment. Therefore, this paper proposes the positioning system which can estimate the error source i.e. the vehicle parameter errors, such as the right and left wheel radius error, using gyroscope and ultrasonic sensor and correct the parameter to reduce the dead-reckoned position estimation error. The extended Kalman filter was used as a method for the multisensor data fusion. The simulation to verify the effectiveness of the proposed positioning system is performed.
The main objective of this paper is to investigate the potential utility of multisensor remotely sensed data for improved coastal wetland mapping. Five data fusion models, three algebraic models (Multiplicative (MT), Brovey (BT) and Wavelet transform (WT)) and two spectral domain models (Principals component transform (PCT) and Intensity-Hue-Saturation (IHS)) were implemented and tested over the multisensor data. The fused images were then compared based on visual and statistical approaches. The results show that the wavelet transform provides greater flexibility for combining optical data sets and has good potential for preserving the spatial and spectral content of the original images . However, this model yields poor information when combining optical and microwave data. Brovey transform is more reliable for fusing optical and microwave image data and yields improved information about different wetland features of the coastal zone.
Journal of the Korean Society for Precision Engineering
/
v.20
no.11
/
pp.79-90
/
2003
In this paper, we propose a multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using multi-ultrasonic sensor. Instead of using “sensor fusion” method which generates the trajectory of a robot based upon the environment model and sensory data, “command fusion” method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as experiments with IRL-2002. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.
This paper present effective odometry error compensation using multisensor fusion for the accurate positioning of mobile robot in navigation. During obstacle avoidance and wall following of mobile robot, position estimates obtained by odometry become unrealistic and useless because of its accumulated errors. To measure the position and heading direction of mobile robot accurately, odometry sensor a gyroscope and an azimuth sensor are mounted on mobile robot and Complementary-filter is designed and implemented in order to compensate complementary drawback of each sensor and fuse their information. The experimental results show that the multisensor fusion system is more accurate than odometry only in estimation of the position and direction of mobile robot.
This paper evaluates the closed loop performance of the reaching law based discrete sliding mode controller with multisensor data fusion (MSDF) in real time, by controlling the first two vibrating modes of a piezo actuated structure. The vibration is measured using two homogeneous piezo sensors. The states estimated from sensors output are fused. Four fusion algorithms are considered, whose output is used to control the structural vibration. The controller is designed using a model identified through linear Recursive Least Square (RLS) method, based on ARX model. Improved vibration suppression is achieved with fused data as compared to single sensor. The experimental evaluation of the closed loop performance of sliding mode controller with data fusion applied to piezo actuated structure is the contribution in this work.
A filtering algorithm based on the decentralized moving average Kalman filter with uncertainties is proposed in this paper. The proposed filtering algorithm presented combines the Kalman filter with the moving average strategy. A decentralized fusion algorithm with the weighted sum structure is applied to the local moving average Kalman filters (LMAKFs) of different window lengths. The proposed algorithm has a parallel structure and allows parallel processing of observations. Hence, it is more reliable than the centralized algorithm when some sensors become faulty. Moreover, the choice of the moving average strategy makes the proposed algorithm robust against linear discrete-time dynamic model uncertainties. The derivation of the error cross-covariances between the LMAKFs is the key idea of studied. The application of the proposed decentralized fusion filter to dynamic systems within a multisensor environment demonstrates its high accuracy and computational efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.