• 제목/요약/키워드: Multiscale Model

검색결과 177건 처리시간 0.021초

Concrete fragmentation modeling using coupled finite element - meshfree formulations

  • Wu, Youcai;Choi, Hyung-Jin;Crawford, John E.
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.173-195
    • /
    • 2013
  • Meshfree methods are known to have the capability to overcome the strict regularization requirements and numerical instabilities that encumber the finite element method (FEM) in large deformation problems. They are also more naturally suited for problems involving material perforation and fragmentation. To take advantage of the high efficiency of FEM and high accuracy of meshfree methods, a coupled finite element (FE) and reproducing kernel (RK, one of the meshfree approximations) formulation is described in this paper. The coupling of FE and RK approximation is implemented in an evolutionary fashion, where the extent and location of the evolution is dependent on a triggering criteria provided by the material constitutive laws. To enhance computational efficiency, Gauss quadrature is applied to integrate both FE and RK domains so that no state variable transfer is required when mesh conversion is performed. To control the hourglassing that might occur with 1-point integrated hexahedral grids, viscous type hourglass control is implemented. Meanwhile, the FEM version of the K&C concrete (KCC) model was modified to make it applicable in both FE and RK formulations. Results using this code and the KCC model are shown for the modeling of concrete responses under quasi-static, blast and impact loadings. These analyses demonstrate that fragmentation phenomena of the sort commonly observed under blast and impact loadings of concrete structures was able to be realistically captured by the coupled formulation.

Design of silicon-on-nothing structure based on multi-physics analysis

  • Song, Jihwan;Zhang, Linan;Kim, Dongchoul
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권3호
    • /
    • pp.225-231
    • /
    • 2016
  • The formation of silicon-on-nothing (SON) structure during an annealing process from the silicon substrate including the trench structures has been considered as an effective technique to construct the structure that has an empty space under the closed flat surface. Previous studies have demonstrated the mechanism of the formation of SON structure, which is based on the surface diffusion driven by the minimization of their surface energy. Also, it has been fragmentarily shown that the morphology of SON structure can be affected by the initial design of trench (e.g., size, number) and the annealing conditions (e.g., temperature, pressure). Based on the previous studies, here, we report a comprehensive study for the design of the cavity-embedded structure (i.e., SON structure). To do this, a dynamic model has been developed with the phase field approach. The simulation results represent that the morphology of SON structures could be detailedly designed, for example the position and thickness of cavity, the thickness of top and bottom layer, according to the design parameters. This study will give us an advantage in the effective design of SON structures.

Energy and force transition between atoms and continuum in quasicontinuum method

  • Chang, Shu-Wei;Liao, Ying-Pao;Huang, Chang-Wei;Chen, Chuin-Shan
    • Interaction and multiscale mechanics
    • /
    • 제7권1호
    • /
    • pp.543-561
    • /
    • 2014
  • We present a full energy and force formulation of the quasicontinuum method with non-local and local transition elements. Non-local transition elements are developed to transmit inhomogeneity from the atomistic to the continuum regions. Local transition elements are developed to resolve the mathematical mismatch between non-local atoms and the local continuum. The rationale behind these transition elements is provided by analyzing the energy and force transitions between atoms and continuum under the Cauchy-Born rule. We show that breakdown of the Cauchy-Born rule occurs for slaved atoms of local elements within the cutoff of non-local atoms. The inadequacy of the Cauchy-Born rule at the transition region naturally leads to the need of atomistic treatment of transition slaved and transition representative atoms. Such an atomistic treatment together with a full or cutoff sampling allows non-local transition elements containing these transition entities to transmit inhomogeneity. Different force formulations for transition representative atoms and pure local representative atoms allow the local transition elements to resolve non-local and local mismatches. The method presented herein is validated by force calculations in an unstressed perfect crystal as well as an unrelaxed grain boundary model. A nanoindentation simulation in 3D is conducted to demonstrate the accuracy and efficiency of the proposed method.

다중스케일 분석과 SVM 비선형 예측 모형을 활용한 상수도 수요량 예측기법 개발 (A development of water demand forecasting model using multiscale analysis and SVM based nonlinear prediction model)

  • 권현한;김민지;이봉국;구자용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.367-367
    • /
    • 2012
  • 기후변화로 인해 기온, 강수량, 습도 등의 기후를 예측하고 변화하는 환경에 적응해가며 생활하고 있다. 또한 여러 가지 외부적인 요인들의 영향을 받아 상수도 시설에서의 에너지 사용량도 영향을 많이 받는다. 하지만 이러한 상수도 시설의 사용량 변화로 인해 상수도 수요량의 변화량을 예측하는데 있어서 국내 연구 및 방법이 많이 부족한 상황이다. 이에 본 연구에서는 다중스케일을 기반으로 하는 비선형 예측 모형을 개발하고자 한다. 다중스케일 분석에서도 가장 우수한 분해 능력을 가지는 Wavelet Transform을 적용하여 시계열을 분해한 후 패턴인식 기반의 비선형 예측모형인 Support Vector Machine(SVM)을 적용하였다. 상수도 수요량의 예측 과정은 다음과 같다. 첫째, 상수도 수요량 자료를 Wavelet Transform 기법을 통하여 단순화 시킨다. 둘째, Global Wavelet Spectrum을 통하여 통계적으로 의미 있는 성분만을 추출하고 이를 해석 대상으로 한다. 셋째, 특정 주기를 갖는 유의한 독립성분들에 대해서 최적 지체시간을 결정한 후 SVM모형을 통해 예측 모형을 구축한다. 넷째, 나머지 성분에 대해서도 SVM 모형을 적용하여 예측을 실시한 후 앞서 예측된 성분과 모두 결합하여 최종적으로 예측시계열을 구성한다.

  • PDF

멀티스케일 해석을 통한 히스테리시스 고무 마찰 예측 연구 (Predictive Study of Hysteretic Rubber Friction Based on Multiscale Analysis)

  • 남승국;오염락;전성희
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.378-383
    • /
    • 2014
  • This study predicts the of the hysteretic friction of a rubber block sliding on an SMA asphalt road. The friction of filled rubber on a rough surface is primarily determined by two elements:the viscoelasticity of the rubber and the multi-scale perspective asperities of the road. The surface asperities of the substrate exert osillating forces on the rubber surface leading to energy dissipation via the internal friction of the rubber when rubber slides on a hard and rough substrate. This study defines the power spectra at different length scales by using a high-resolution surface profilometer, and uses rubber and road surface samples to conduct friction tests. I consider in detail the case when the substrate surface has a self affine fractal structure. The theory developed by Persson is applied to describe these tests through comparison with the hysteretic friction coefficient relevant to the energy dissipation of the viscoelastic rubber attributable to cyclic deformation. The results showed differences in the absolute values of predicted and measured friction, but with high correlation between these values. Hence, the friction prediction model is an appropriate tool for separating the effects of each factor. Therefore, this model will contribute to clearer understanding of the fundamental principles of rubber friction.

Numerical simulation of soil-structure interaction in framed and shear-wall structures

  • Dalili, M.;Alkarni, A.;Noorzaei, J.;Paknahad, M.;Jaafar, M.S.;Huat, B.B.K.
    • Interaction and multiscale mechanics
    • /
    • 제4권1호
    • /
    • pp.17-34
    • /
    • 2011
  • This paper deals with the modeling of the plane frame structure-foundation-soil system. The superstructure along with the foundation beam is idealized as beam bending elements. The soil medium near the foundation beam with stress concentrated is idealized by isoparametric finite elements, and infinite elements are used to represent the far field of the soil media. This paper presents the modeling of shear wall structure-foundation and soil system using the optimal membrane triangular, super and conventional finite elements. Particularly, an alternative formulation is presented for the optimal triangular elements aimed at reducing the programming effort and computational cost. The proposed model is applied to a plane frame-combined footing-soil system. It is shown that the total settlement obtained from the non-linear interactive analysis is about 1.3 to 1.4 times that of the non-interactive analysis. Furthermore, the proposed model was found to be efficient in simulating the shear wall-foundation-soil system, being able to yield results that are similar to those obtained by the conventional finite element method.

Two scale seismic analysis of masonry infill concrete frames through hybrid simulation

  • Cesar Paniagua Lovera;Gustavo Ayala Milian
    • Earthquakes and Structures
    • /
    • 제24권6호
    • /
    • pp.393-404
    • /
    • 2023
  • This paper presents the application of hybrid-simulation-based adapter elements for the non-linear two-scale analysis of reinforced concrete frames with masonry infills under seismic-like demands. The approach provides communication and distribution of the computations carried out by two or more remote or locally distributed numerical models connected through the OpenFresco Framework. The modeling consists of a global analysis formed by macro-elements to represent frames and walls, and to reduce global degrees of freedom, portions of the structure that require advanced analysis are substituted by experimental elements and dimensional couplings acting as interfaces with their respective sub-assemblies. The local sub-assemblies are modeled by solid finite elements where the non-linear behavior of concrete matrix and masonry infill adopt a continuum damage representation and the reinforcement steel a discrete one, the conditions at interfaces between concrete and masonry are considered through a contact model. The methodology is illustrated through the analysis of a frame-wall system subjected to lateral loads comparing the results of using macro-elements, finite element model and experimental observations. Finally, to further assess and validate the methodology proposed, the paper presents the pushover analysis of two more complex structures applying both modeling scales to obtain their corresponding capacity curves.

MRU-Net: A remote sensing image segmentation network for enhanced edge contour Detection

  • Jing Han;Weiyu Wang;Yuqi Lin;Xueqiang LYU
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권12호
    • /
    • pp.3364-3382
    • /
    • 2023
  • Remote sensing image segmentation plays an important role in realizing intelligent city construction. The current mainstream segmentation networks effectively improve the segmentation effect of remote sensing images by deeply mining the rich texture and semantic features of images. But there are still some problems such as rough results of small target region segmentation and poor edge contour segmentation. To overcome these three challenges, we propose an improved semantic segmentation model, referred to as MRU-Net, which adopts the U-Net architecture as its backbone. Firstly, the convolutional layer is replaced by BasicBlock structure in U-Net network to extract features, then the activation function is replaced to reduce the computational load of model in the network. Secondly, a hybrid multi-scale recognition module is added in the encoder to improve the accuracy of image segmentation of small targets and edge parts. Finally, test on Massachusetts Buildings Dataset and WHU Dataset the experimental results show that compared with the original network the ACC, mIoU and F1 value are improved, and the imposed network shows good robustness and portability in different datasets.

DNN을 활용한 부산지역 초미세먼지 예보방안 (A Study on the PM2.5 forcasting Method in Busan Using Deep Neural Network )

  • 도우곤;김동영;송희진;조갑제
    • 한국환경과학회지
    • /
    • 제32권8호
    • /
    • pp.595-611
    • /
    • 2023
  • The purpose of this study is to improve the daily prediction results of PM2.5 from the air quality diagnosis and evaluation system operated by the Busan Institute of Health and Environment in real time. The air quality diagnosis and evaluation system is based on the photochemical numerical model, CMAQ (Community multiscale air quality modeling system), and includes a 3-day forecast at the end of the model's calculation. The photochemical numerical model basically has limitations because of the uncertainty of input data and simplification of physical and chemical processes. To overcome these limitations, this study applied DNN (Deep Neural Network), a deep learning technique, to the results of the numerical model. As a result of applying DNN, the r of the model was significantly improved. The r value for GFS (Global forecast system) and UM (Unified model) increased from 0.77 to 0.87 and 0.70 to 0.83, respectively. The RMSE (Root mean square error), which indicates the model's error rate, was also significantly improved (GFS: 5.01 to 6.52 ug/m3 , UM: 5.76 to 7.44 ug/m3 ). The prediction results for each concentration grade performed in the field also improved significantly (GFS: 74.4 to 80.1%, UM: 70.0 to 77.9%). In particular, it was confirmed that the improvement effect at the high concentration grade was excellent.

나노입자의 크기효과와 체적분율 효과를 동시 고려한 나노복합재의 멀티스케일 브리징 해석기법에 관한 연구 (A Study on the Development of Multiscale Bridging Method Considering the Particle Size and Concentration Effect of Nanocomposites)

  • 양승화;유수영;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제22권4호
    • /
    • pp.343-348
    • /
    • 2009
  • 본 연구에서는 분자동역학 전산모사와 미시역학 모델을 이용하여 나노입자의 체적분율이 높은 경우 나노 입자의 크기효과와 체적분율 효과가 나노복합재의 기계적 물성에 미치는 영향을 효과적으로 묘사할 수 있는 순차적 브리징 해석기법을 제안하였다. 체적분율이 12%로 고정된 상태에서 나노입자의 크기변화에 따른 영률과 전단계수를 분자동역학 전산모사를 통해 예측한 후, 이를 연속체 모델에서 구현하기 위해 다중입자모델을 적용하였다. 나노입자의 크기효과를 반영하기 위해 입자와 기지 사이에 유효계면을 추가적인 상으로 도입하였고, 12%의 체적분율 조건에서 나타날 수 있는 체적분율 효과는 나노복합재를 둘러싸는 가상의 영역인 무한영역의 물성값의 변화를 통해 조절되도록 하였다. 유효계면과 무한영역의 물성을 입자의 반경에 대한 함수로 근사한 후 다양한 입자의 크기에서 나타나는 나노복합재의 물성변화의 예측이 가능하도록 하였다. 제안된 브리징 해석기법의 적용을 통해 분자동역학 해석결과와 잘 일치하는 결과를 연속체 모델에서 효율적이고 정확하게 얻을 수 있었다. 또한 유효계면의 두께와 물성 변화가 나노복합재의 기계적 물성에 미치는 영향을 고찰하였다.