• Title/Summary/Keyword: Multiprocessor

Search Result 315, Processing Time 0.024 seconds

Real-Time Aperiodic Tasks Scheduling Using Improved Synthetic Utilization on Multiprocessor Systems (다중프로세서 시스템상의 개선된 합성 이용율을 이용한 실시간 비주기 태스크 스케줄링)

  • Moon, Seok-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.97-102
    • /
    • 2014
  • Abdelzaher et al. proposed an algorithm to determine the schedulability of aperiodic tasks on multiprocessor systems, and proved that the aperiodic tasks are schedulable if the upperbound of synthetic utilization is less than or equal to 0.59. But this algorithm has a drawback in that if some tasks, even though they are completed and have no more execution times, are included in the current invocation set, their execution times and deadlines are added to the synthetic utilization. This may lead to a problem in which actually schedulable tasks are decided not to be schedulable. In this paper, we recognize the above mentioned problem and propose an improved synthetic utilization method that can be used to schedule aperiodic tasks more efficiently on multiprocessor systems.

Static Homogeneous Multiprocessor Task Graph Scheduling Using Ant Colony Optimization

  • Boveiri, Hamid Reza;Khayami, Raouf
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3046-3070
    • /
    • 2017
  • Nowadays, the utilization of multiprocessor environments has been increased due to the increase in time complexity of application programs and decrease in hardware costs. In such architectures during the compilation step, each program is decomposed into the smaller and maybe dependent segments so-called tasks. Precedence constraints, required execution times of the tasks, and communication costs among them are modeled using a directed acyclic graph (DAG) named task-graph. All the tasks in the task-graph must be assigned to a predefined number of processors in such a way that the precedence constraints are preserved, and the program's completion time is minimized, and this is an NP-hard problem from the time-complexity point of view. The results obtained by different approaches are dominated by two major factors; first, which order of tasks should be selected (sequence subproblem), and second, how the selected sequence should be assigned to the processors (assigning subproblem). In this paper, a hybrid proposed approach has been presented, in which two different artificial ant colonies cooperate to solve the multiprocessor task-scheduling problem; one colony to tackle the sequence subproblem, and another to cope with assigning subproblem. The utilization of background knowledge about the problem (different priority measurements of the tasks) has made the proposed approach very robust and efficient. 125 different task-graphs with various shape parameters such as size, communication-to-computation ratio and parallelism have been utilized for a comprehensive evaluation of the proposed approach, and the results show its superiority versus the other conventional methods from the performance point of view.

Multi-Programmed Simulation of a Shared Memory Multiprocessor System (공유메모리 다중프로세서 시스템의 다중 프로그래밍 모의실험 기법)

  • 최효진;전주식
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.194-204
    • /
    • 2003
  • The performance of a shared memory multiprocessor system is dependent on the system software such as scheduling policy as well as hardware system. Most of existing simulators, however, do not support simulation for multi-programmed environment because they can execute only a single benchmark application at a time. We propose a multi-programmed simulation method on a program-driven simulator, which enables the concurrent executions of multiple parallel workloads contending for limited system resources. Using the proposed method, system developers can measure and analyze detailed effects of resource conflicts among the concurrent applications as well as the effects of scheduling policies on a program-driven simulator. As a result, the proposed multi-programmed simulation provides more accurate and realistic performance projection to design a multiprocessor system.

A Modified Least-Laxity First Scheduling Algorithm for Reducing Context Switches on Multiprocessor Systems (다중 프로세서 시스템에서 문맥교환을 줄이기 위한 변형된 LLF 스케줄링 알고리즘)

  • 오성흔;길아라;양승민
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.2
    • /
    • pp.68-77
    • /
    • 2003
  • The Least-Laxity First(or LLF) scheduling algorithm assigns the highest priority to a task with the least laxity, and has been proved to be optimal for a uni-processor and sub-optimal for a multi-processor. However, this algorithm Is Impractical to implement because laxity tie results in the frequent context switches among tasks. In this paper, a Modified Least-Laxity First on Multiprocessor(or MLLF/MP) scheduling algorithm is proposed to solve this problem, i.e., laxity tie results in the excessive scheduling overheads. The MLLF/MP is based on the LLF, but allows the laxity inversion. MLLF/MP continues executing the current running task as far as other tasks do not miss their deadlines. Consequently, it avoids the frequent context switches. We prove that the MLLF/MP is also sub-optimal in multiprocessor systems. By simulation results, we show that the MLLF/MP has less scheduling overheads than LLF.

A Multiprocessor Scheduling Methodology for DSP Applications.

  • Hong, Chun-Pyo;Yang, Jin-Mo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.2
    • /
    • pp.38-46
    • /
    • 2001
  • This paper presents a new multiprocessor system and corresponding scheduling algorithm that can be applied for implementation of fine grain DSP algorithms such as digital filters. The newly proposed system uses one or more shared buses as the basic interconnection network between processors, and fixed amount of clock-skew is maintained between instruction execution of processors. This system not only can handle the interprocessor communications very efficiently but also can explicitly incorporate the interprocessor communication delay time into the multiprocessor scheduling model. This paper also presents a new scheduling strategy for implementing digital filters expressed in fully-specified flow graphs on the proposed system. The simulation result shows that well-known digital filters can be implemented on proposed multiprocessor in which the implementation satisfies the iteration period bound.

  • PDF

Dominance and Performance of Real-time Scheduling Algorithms on Multiprocessors (다중처리기 상의 실시간 스케줄링 알고리즘의 우월 관계 및 성능)

  • Park, Min-Kyu;Han, Sang-Chul;Kim, Hee-Heon;Cho, Seong-Je;Cho, Yoo-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.7
    • /
    • pp.368-376
    • /
    • 2005
  • Multiprocessor architecture becomes increasingly common on real-time systems as computer hardware technology rapidly progresses and the workload of real-time systems increases. However, efficient solutions for many real-time multiprocessor scheduling problems are not known. Hence many researchers apply uniprocessor scheduling algorithms to multiprocessor scheduling or devise new algorithms based on these algorithms. Such algorithms are EDF (Earliest Deadline First), LLF (Least Laxity First), EDF-US[m/(2m-1)], and EDZL (Earliest Deadline Zero Laxity), and comparative studies on them are necessary. In this paper, we show the dominance relation of these algorithms with respect to schedulability, and we prove EDZL strictly dominates EDF. The simulation results show that EDZL has high processor utilization and it causes a small number of preemptions.

Optimal RM Scheduling for Simply Periodic Tasks on Uniform Multiprocessors (유니폼 멀티프로세서 환경에서 단순 주기성 태스크를 위한 최적 RM 스케줄링)

  • Jung, Myoung-Jo;Cho, Moon-Haeng;Kim, Joo-Man;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.52-63
    • /
    • 2009
  • The problem of scheduling simply periodic task systems upon a uniform multiprocessor is considered. Partitioning of periodic task systems requires solving the bin-packing problem, which is known to be intractable (NP-hard in the strong sense). This paper presents a global scheduling algorithm which transforms a given simply periodic task system into another using a "task-splitting" technique. Each transformed simply periodic task system is guaranteed to be successfully scheduled upon any uniform multiprocessor using a partitioned scheduling algorithm. It is proven that the proposed algorithm achieves the theoretical maximum utilization bound upon any uniform multiprocessor platform.

SS-DRM: Semi-Partitioned Scheduling Based on Delayed Rate Monotonic on Multiprocessor Platforms

  • Senobary, Saeed;Naghibzadeh, Mahmoud
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.43-56
    • /
    • 2014
  • Semi-partitioned scheduling is a new approach for allocating tasks on multiprocessor platforms. By splitting some tasks between processors, semi-partitioned scheduling is used to improve processor utilization. In this paper, a new semi-partitioned scheduling algorithm called SS-DRM is proposed for multiprocessor platforms. The scheduling policy used in SS-DRM is based on the delayed rate monotonic algorithm, which is a modified version of the rate monotonic algorithm that can achieve higher processor utilization. This algorithm can safely schedule any system composed of two tasks with total utilization less than or equal to that on a single processor. First, it is formally proven that any task which is feasible under the rate monotonic algorithm will be feasible under the delayed rate monotonic algorithm as well. Then, the existing allocation method is extended to the delayed rate monotonic algorithm. After that, two improvements are proposed to achieve more processor utilization with the SS-DRM algorithm than with the rate monotonic algorithm. According to the simulation results, SS-DRM improves the scheduling performance compared with previous work in terms of processor utilization, the number of required processors, and the number of created subtasks.

A Lock Mechanism for HiPi-bus Based Multiprocessor Systems (HiPi-bus 구조의 다중 프로세서 시스템에서의 잠금장치)

  • 윤용호;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.33-43
    • /
    • 1993
  • Lock mechanism is essential for synchronization on the multiprocessor systems. Lock mechanism needs to reduce the time for lock operation in low lock contention. Lock mechanism must consider the case of the high lock contention. The conventional lock control scheme in memory results in the increase of bus traffic and memory utilization in lock operation. This paper suggests a lock scheme which stores the lock data in cache and manages it efficiently to reduce the time spent in lock operation when the lock contention is low on a multiprocessor system built on HiPi-bus(Highly Pipelined bus). This paper also presents the design of the HIPi-CLOCK (Highly Pipelined bus Cache LOCK mechanism) which transfere the data from on cache to another when the lock contention is high. The designed simulator compares the conventional lock scheme which controls the lock in memory with the suggested HiPi-CLOCK scheme in terms of the RMW(Read-Modify-Write) operation time using simulated trace. It is shown that the suggested lock control scheme performance is over twice than that of the conventional method in low lock contention. When the lock contention is high, the performance of the suggested scheme increases as the number of the shared lock data increases.

  • PDF

A Circuit Complexity Optimization ILP Algorithm of High-level Synthesis System for New Multiprocessor Design (새로운 멀티프로세서 디자인을 위한 상위수준합성 시스템의 회로 복잡도 최적화 ILP 알고리즘)

  • Chang, Jeong-Uk;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.137-144
    • /
    • 2016
  • In this paper, we have proposed a circuit complexity optimization ILP algorithm of high-level synthesis system for new multiprocessor design. We have analyzed to the operator characteristics and structure of datapath in the most important high-level synthesis. We also introduced the concept of virtual operator for the scheduling of multi-cycle operations. Thus, we demonstrated the complexity to implement a multi-cycle operation of the operator, regardless of the type of operation that can be applied for commonly use in the ILP algorithm. We have achieved is that standard benchmark model for the scheduling of the 5th digital wave filter, it was exactly the same due to the existing datapath scheduling results.