곱셈은 동수누가, 배, 곱집합을 포함한 여러 가지 의미를 가지고 있고 다양한 상황에서 사용된다. 초등학교에서 곱셈의 이러한 다양한 의미는 교과서에 구체화되어 있으며 지도 방법이나 지도 순서가 다른 개념이나 연산에 비해 매우 안정적으로 정착되어 있다. 그럼에도 불구하고 좀더 보완되고 개선될 여지가 있어 보인다. 이 연구는 곱셈의 여러 개념적 측면들이 어떤 유사점과 차이점이 있는지를 문헌을 통해 고찰해 보고 교과서 분석을 통해 그 지도 방법과 지도 순서가 적절한지를 분석해 보려는 것이다. 연구 결과, 배 개념이 너무 일찍 도입되었으며, 그 이후 곱셈 지도에서 배 개념을 제대로 반영하지 못하였음을 알 수 있었다. 또한 양과 양의 곱셈을 직사각형 넓이 개념을 이용하여 지도할 필요성도 있었다.
This study is about division and right multiplication in matrices. The discussion of the properties of multiplication and division is examined. Some results between multiplication based on the row-column relationship and division based on the same relationship are discussed. The commonalities of these results between the processes are emphasized. Examples of unrealized properties are given. The algebraic properties of the newly defined right product and division are clarified in matrices. The properties of the known multiplication operation and new situations between right multiplication and division are investigated. Some results are declared between the transpositions of matrices and the obtained rules of operations. New results are discussed belong the equations ${\underleftarrow{XA}}=B$ and ${\underleftarrow{AX}}=B$. New ideas are proposed for solving these equations. The contribution The contribution is explained the equation $AB={\underleftarrow{BA}}$ to division operation. Many new properties, lemmas and theorems are presented on this subject.
모듈러 곱셈은 ECC의 점 스칼라 곱셈을 위한 핵심 연산이며, ECC 프로세서의 성능에 영향을 미치는 가장 중요한 요소이다. 본 논문에서는 3-way Toom-Cook 곱셈 알고리듬과 수정된 고속 축약 알고리듬을 적용한 256-비트 모듈러 곱셈기 설계에 대해 기술한다. 90-비트 곱셈기 1개와 264-비트 가산기 3개가 사용되었으며, 하드웨어 크기와 소요 클록 사이클 수 사이의 최적화를 이루었다. Zynq UltraScale+ MPSoC 디바이스에 구현하여 모듈러 곱셈기를 검증하였으며, 모듈러 곱셈 연산에 15 클록 사이클이 소요된다.
It is difficult to implement sound field effect on real time using linear convolution in time domain because linear convolution needs much multiply operations. In this paper three ways is introduced to reduce multiplication operations. Firstly, linear convolution in time domain is replaced with circular convolution in frequency domain. It means that it operates multiplication in place of convolution. Secondly, one frame will be divided into several frames. It will reduce the multiplication operation in processing that transforms time domain into frequency domain. Finally, QFT will be used in place of FFT. Three ways result much reduction in multiplication operations. The reduction of the multiplication operation makes the real time implementation possible.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권2호
/
pp.738-756
/
2020
The modular multiplication is the key module of public-key cryptosystems such as RSA (Rivest-Shamir-Adleman) and ECC (Elliptic Curve Cryptography). However, the efficiency of the modular multiplication, especially the modular square, is very low. In order to reduce their operation cycles and power consumption, and improve the efficiency of the public-key cryptosystems, a dual-field efficient FIPS (Finely Integrated Product Scanning) modular multiplication algorithm is proposed. The algorithm makes a full use of the correlation of the data in the case of equal operands so as to avoid some redundant operations. The experimental results show that the operation speed of the modular square is increased by 23.8% compared to the traditional algorithm after the multiplication and addition operations are reduced about (s2 - s) / 2, and the read operations are reduced about s2 - s, where s = n / 32 for n-bit operands. In addition, since the algorithm supports the length scalable and dual-field modular multiplication, distinct applications focused on performance or cost could be satisfied by adjusting the relevant parameters.
경량 사물인터넷 디바이스 상에서의 암호화 구현은 정확하고 빠르게 연산을 수행하여 서비스의 가용성을 높이는 것이 중요하다. 특히 곱셈 연산은 RSA, ECC, 그리고 SIDH와 같은 공개키 암호화에 활용되는 핵심 연산으로 최적화된 구현이 요구된다. 하지만 최신 저전력 프로세서인 ARM Cortex-M3 프로세서의 경우에는 곱셈연산 입력 크기에 따라 수행속도가 달라지는 보안 취약점을 가지고 있다. 수행속도가 달라지게 될 경우 연산 시간의 차이점을 확인하여 비밀정보를 추출하는 것이 가능하다. 이를 보완하기 위해 최근 연구에서는 고정된 연산 시간 안에 곱셈 연산을 수행하는 기법이 제안되었다. 하지만 해당 구현에서는 여전히 속도가 완전히 최적화되어 있지 않다. 본 논문에서는 기존에 제안된 곱셈연산을 보다 효율적으로 연산하기 위한 기법을 제안한다. 제안된 기법은 기존 방식에 비해 연산 속도를 최대 25.7% 향상시킨다.
Journal of information and communication convergence engineering
/
제13권1호
/
pp.27-35
/
2015
Multiprecision multiplication is the most expensive operation in public key-based cryptography. Therefore, many multiplication methods have been studied intensively for several decades. In Workshop on Cryptographic Hardware and Embedded Systems 2011 (CHES2011), a novel multiplication method called 'operand caching' was proposed. This method reduces the number of required load instructions by caching the operands. However, it does not provide full operand caching when changing the row of partial products. To overcome this problem, a novel method, that is, 'consecutive operand caching' was proposed in Workshop on Information Security Applications 2012 (WISA2012). It divides a multiplication structure into partial products and reconstructs them to share common operands between previous and next partial products. However, there is still room for improvement; therefore, we propose a finely designed operand-caching mode to minimize useless memory accesses when the first row is changed. Finally, we reduce the number of memory access instructions and boost the speed of the overall multiprecision multiplication for public key cryptography.
The acceleration of neural networks has become an important topic in the field of computer vision. An accelerator is absolutely necessary for accelerating the lightweight model. Most accelerator-supported operators focused on direct convolution operations. If the accelerator does not provide GEMM operation, it is mostly replaced by CPU operation. In this paper, we proposed an optimization technique for 2-stage tiling-based GEMM routines on VTA. We improved performance of the matrix multiplication routine by maximizing the reusability of the input matrix and optimizing the operation pipelining. In addition, we applied the proposed technique to the DarkNet framework to check the performance improvement of the matrix multiplication routine. The proposed GEMM method showed a performance improvement of more than 2.4 times compared to the non-optimized GEMM method. The inference performance of our DarkNet framework has also improved by at least 2.3 times.
타원곡선 암호에 필수적으로 사용되는 모듈러 곱셈의 고성능 하드웨어 설계에 대해 기술한다. 본 논문의 모듈러 곱셈기는 NIST FIPS 186-2에 정의된 소수체 상의 5가지 체 크기(192, 224, 256, 384, 521 비트)의 모듈러 곱셈을 지원하며, 정수 곱셈과 축약의 두 단계 과정으로 모듈러 곱셈을 연산한다. 고속 정수 곱셈을 위해 카라추바-오프만 곱셈 알고리듬이 사용되었고, 축약 연산을 위해 Lazy 축약 알고리듬이 사용되었다. 또한, Lazy 축약에 포함된 나눗셈 연산을 위해 Nikhilam 나눗셈 알고리듬이 사용되었으며, 나눗셈 연산은 주어진 모듈러 값에 대해 처음 한 번만 연산되고, 모듈로 값이 고정된 상태로 연속적인 모듈러 곱셈이 수행되는 경우에는 나눗셈을 거치지 않도록 하였다. 설계된 모듈러 곱셈기는 32 MHz의 클록 주파수로 동작하는 경우에 초당 640만번의 모듈러 곱셈을 연산할 수 있는 것으로 평가되었으며, 180-nm CMOS 셀 라이브러리로 합성한 결과, 67 MHz의 클록 주파수로 동작이 가능하며, 456,400 등가 게이트로 구현되었다.
In transmitting and receiving such a large amount of data, reliable data communication is crucial for normal operation of a device and to prevent abnormal operations caused by errors. Therefore, in this paper, it is assumed that an error correction code (ECC) that can detect and correct errors by itself is used in an environment where massive data is sequentially received. Because an embedded system has limited resources, such as a low-performance processor or a small memory, it requires efficient operation of applications. In this paper, we propose using an accelerated ECC-decoding technique with a graphics processing unit (GPU) built into the embedded system when receiving a large amount of data. In the matrix-vector multiplication that forms the Hamming code used as a function of the ECC operation, the matrix is expressed in compressed sparse row (CSR) format, and a sparse matrix-vector product is used. The multiplication operation is performed in the kernel of the GPU, and we also accelerate the Hamming code computation so that the ECC operation can be performed in parallel. The proposed technique is implemented with CUDA on a GPU-embedded target board, NVIDIA Jetson TX2, and compared with execution time of the CPU.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.