• Title/Summary/Keyword: Multiplexing system

Search Result 990, Processing Time 0.023 seconds

A Novel Alamouti Transmission Scheme for OFDM Based Asynchronous Cooperative Systems with Low Relay Complexity (비동기 협력 통신 시스템에서 낮은 릴레이 복잡도를 갖는 새로운 Alamouti 전송 기법)

  • Kang, Seung-Goo;Lee, Young-Po;Song, Iick-Ho;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.105-111
    • /
    • 2011
  • In this paper, we propose a novel Alamouti space-time transmission scheme for orthogonal frequency division multiplexing (OFDM) based asynchronous cooperative communication systems with low relay complexity. The conventional scheme requires an additional operation likes time-reversal at the relay nodes besides the simple multiplications at the relay nodes, which result in increasing the complexity of relay nodes. Unlike the conventional scheme, exploiting the simple combination of the symbols at the source node and the simple multiplications at the relay nodes, the proposed scheme achieves the second order diversity gain by obtaining the Alamouti code structure at the destination node. Simulation results show that the proposed scheme achieves the second order diversity gain and has the same bit error rate performance as the conventional scheme.

1$\times$16 DMUX Using Holographic Volume Gratings (홀로그래픽 부피격자를 이용한 1$\times$16 DMUX)

  • Lee, Kwon-Yeon;An, Jun-Won;Kim, Nam;Lee, Hyun-Jae;Seo, Wan-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.5
    • /
    • pp.31-38
    • /
    • 2000
  • We propose a new photorefractive demultiplexer(DMUX) which can select the 16 channel signal in WDM optical communication system using the wavelength selectivity and the demultiplexing property through multiple recording of holographic volume grating in photorefractive Fe-LiNbO$_{3}$ crystal. For the multiple writing of the 16 channels having uniform diffraction efficiency, the rotation multiplexing technique and the exposure time schedule are used. Designed DMUX has the 16 channels with 0.5nm spacing between 670nm and 677.5nm and the bandwidth of 0.16nm. From the experimental results, the diffraction efficiency of each channel is 8.3 $\pm$0.62%, the optical loss from fresnel reflection and absorption on the crystal is 0.4cm-1, the 3㏈ bandwidth is 0.16 $\pm$0.005nm and the channel spacing is 0.46~0.5nm.

  • PDF

A Sutdy on the Multiple Access Protocol and Middleware Algorithm USN Foundation (USN기반 다중접속 프로토콜 및 미들웨어에 적합한 알고리즘에 관한 연구)

  • Kang, Jeong-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.67-73
    • /
    • 2008
  • Our research is aimed at developing an architectural frame-work of USN sensor network discovery service systems. The research is fo-cused on the four areas a survey of USN technology, development of a USN software model, development of the design space of the USN sensor network discovery service, and finally the architectural framework of the USN sensor network dicovery service. The survey of the USN technology is conducted on four technological visions that contain USN system technology, USN networking technology, and USN middleware along with the service platform, With respect to each technological division, domestic and worldwide leading research projects are primarily explored with their technical features and research projects are primarily explored with their technical features and research output To provide a means to analyze sensor network discovery services, we devel-oped the design space of the sensor network discovery services by exploring the scalability with respect to query scope, lookup performance, and resolution network.

Symbol Based Rate Adaptation in Coded MIMO-OFDM Systems (심볼 기반의 적응 변조 기법을 이용한 채널 부호화된 MIMO-OFDM 시스템)

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.50-58
    • /
    • 2008
  • The use of space-division multiple access(SDMA) in the downlink of multiuser multi-input/multi-output(MIMO) wireless transmission systems can provide substantial gains in system throughput. When the channel state information(CSI) is available at the transmitter, a considerable performance improvement can be attained by adapting the transmission rates to the reported CSI. In addition, to combat frequency selective fadings in wideband wireless channels, bit-interleaved coded OFDM(BIC-OFDM) modulation schemes are employed to provide reliable packet delivery by utilizing frequency diversity through channel coding. In this paper, we propose an adaptive modulation and coding(AMC) scheme combined with an opportunistic scheduling technique for the MIMO BIC-OFDM with bandwidth-limited feedback channels. The proposed scheme enhances the link performance by exploiting both the frequency diversity and the multiuser diversity. To reduce the feedback information, the proposed AMC scheme employs rate adaptation methods based on an OFDM symbol rather than on the whole subchannels. Simulation results show that the proposed scheme exhibits a substantial performance gain with a reasonable complexity over single antenna systems.

Triangulation Algorithm for Multi-user Spatial Multiplexing in MIMO Downlink Channels (MIMO 다운링크 채널에서 다중사용자 공간다중화를 위한 알고리즘)

  • Lee, Heun-Chul;Paulraj, Aroyaswami;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.45-54
    • /
    • 2010
  • This paper studies the design of a multiuser multiple-input multiple-output (MIMO) system, where a base station (BS) transmits independent messages to multiple users. The remarkable "dirty paper coding (DPC)" result was first presented by Costa that the capacity does not change if the Gaussian interference is known at the transmitter noncausally. While several implementable DPC schemes have been proposed recently for single-user dirty-paper channels, DPC is still difficult to implement directly in practical multiuser MIMO channels. In this paper, we propose a network channel matrix triangulation (NMT) algorithm for utilizing interference known at the transmitter. The NMT algorithm decomposes a multiuser MIMO channel into a set of parallel, single-input single-output dirty-paper subchannels and then successively employs the DPC to each subchannel. This approach allows us to extend practical single-user DPC techniques to multiuser MIMO downlink cases. We present the sum rate analysis for the proposed scheme. Simulation results show that the proposed schemes approach the sum rate capacity of the multiuser MIMO downlink at moderate signal-to-noise ratio (SNR) values.

An Approximated Model of the Coefficients for Interchannel Interference of OFDM System with Frequency Offset (주파수 오프셋이 있는 OFDM시스템에서 채널간간섭의 간섭계수 근사화 모델)

  • Li, Shuang;Kwon, Hyeock-Chan;Kang, Seog-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.917-922
    • /
    • 2018
  • In the conventional interchannel interference self-cancellation (ICI-SC) schemes, the length of sampling window is the same as the symbol length of orthogonal frequency division multiplexing (OFDM). Thus, the number of complex operations to compute the interference coefficient of each subchannel is significantly increased. To solve this problem, we present an approximated mathematical model for the coefficients of ICI-SC schemes. Based on the proposed approximation, we analyze mean squared error (MSE) and computational complexity of the ICI-SC schemes with the length of sampling window. As a result, the presented approximation has an error of less than 0.01% on the MSE compared to the original equation. When the number of subchannels is 1024, the number of complex computations for the interference coefficients is reduced by 98% or more. Since the computational complexity can be remarkably reduced without sacrificing the self-cancellation capability, it is considered that the proposed approximation is very useful to develop an algorithm for the ICI-SC scheme.

Effects of Cyclic Thermal Load on the Signal Characteristics of FBG Sensors Packaged with Epoxy Adhesives (주기적인 반복 열하중이 패키징된 FBG 센서 신호 특성에 미치는 영향)

  • Kim, Heonyoung;Kang, Donghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.313-319
    • /
    • 2017
  • Fiber optics sensors that have been mainly applied to aerospace areas are now finding applicability in other areas, such as transportation, including railways. Among the sensors, the fiber Bragg grating (FBG) sensors have led to a steep increase due to their properties of absolute measurement and multiplexing capability. Generally, the FBG sensors adhere to structures and sensing modules using adhesives such as an epoxy. However, the measurement errors that occurred when the FBG sensors were used in a long-term application, where they were exposed to environmental thermal load, required calibration. For this reason, the thermal curing of adhesives needs to be investigated to enhance the reliability of the FBG sensor system. This can be done at room temperature through cyclic thermal load tests using four types of specimens. From the test results, it is confirmed that residual compressive strain occurs to the FBG sensors due to an initial cyclic thermal load. In conclusion, signals of the FBG sensors need to be stabilized for applying them to a long-term SHM.

OXC structure for MPλS merging implementation based on WDM network (WDM망 기반의 MPλS merging 구현을 위한 OXC 구조)

  • Kim, Kyeong-Mok;Cho, Yang-Hyuon;Oh, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3B
    • /
    • pp.183-190
    • /
    • 2003
  • The explosion of the Internet has brought an acute need for efficient operation, which becomes to develop several technologies based on optical networks. By matching merging technology using wavelength multiplexing, an efficient administration with limited wavelength can provide scalability of network. The merging in optical layer has limitation of devices since the merging can not be performed in this layer. Hence the merging must be implemented in electronic layer. When the merging is implemented, the delay time would be increased in OXC (Optical Cross Connection), but the improvement of throughput rate will be expected in the process of explosive traffic due to reduction of optical channel supporting large bandwidth. In this thesis, we proposed an OXC of dual module having a merging function. We considered the optimum merging point with the largest in system performance and confirmed results using the simulation.

Towards the Saturation Throughput Disparity of Flows in Directional CSMA/CA Networks: An Analytical Model

  • Fan, Jianrui;Zhao, Xinru;Wang, Wencan;Cai, Shengsuo;Zhang, Lijuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1293-1316
    • /
    • 2021
  • Using directional antennas in wireless Ad hoc networks has many superiorities, including reducing interference, extending transmission range, and increasing space division multiplexing. However, directional transmission introduces two problems: deafness and directional hidden terminals problems. We observe that these problems result in saturation throughput disparity among the competing flows in directional CSMA/CA based Ad hoc networks and bring challenges for modeling the saturation throughput of the flows. In this article, we concentrate on how to model and analyze the saturation throughput disparity of different flows in directional CSMA/CA based Ad hoc networks. We first divide the collisions occurring in the transmission process into directional instantaneous collisions and directional persistent collisions. Then we propose a four-dimensional Markov chain to analyze the transmission state for a specific node. Our model has three different kinds of processes, namely back-off process, transmission process and freezing process. Each process contains a certain amount of continuous time slots which is defined as the basic time unit of the directional CSMA/CA protocols and the time length of each slot is fixed. We characterize the collision probabilities of the node by the one-step transition probability matrix in our Markov chain model. Accordingly, we can finally deduce the saturation throughput for each directional data stream and evaluate saturation throughput disparity for a given network topology. Finally, we verify the accuracy of our model by comparing the deviation of analytical results and simulation results.

Performance Analysis of Antenna Polarization Diversity on LTE 2×2 MIMO in Indoor Environment (실내 환경에서 LTE 2×2 MIMO 기술의 안테나 편파 다이버서티 성능 분석)

  • Nguyen, Duc T.;Devi, Ningombam Devarani;Shin, Seokjoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.1
    • /
    • pp.7-21
    • /
    • 2017
  • Multiple antenna techniques employed in fourth generation mobile communication systems are affected on their performance mostly by transmission environments and antenna configurations. The performance of the indoor LTE(Long-term Evolution) MIMO(multiple input multiple output) has been rigorously evaluated with considering various diversity transmission schemes and propagation conditions in the paper. Specifically, MAC TP(medium access control throughput) and LTE system parameters related to the MIMO technique are analyzed for several indoor propagation conditions. The performance comparison between multiple antenna diversity mode and single antenna mode has been derived as well. The results performed in the paper give the guideline on antenna configurations of polarization diversity in LTE 2×2 MIMO for various indoor channel environments, and possibly are exploited by network operators and antenna manufacturers.