• Title/Summary/Keyword: Multiple-point ground

Search Result 47, Processing Time 0.02 seconds

A Consideration on 3-Phase Non-Loop, Multiple-Point Ground Method in 22.9[kV] CNCV Underground Cable Systems (22.9[kV] CNCV케이블 지중배전계통의 3상 비일괄 동심증성선 다중접지방식에 대한 이론적고찰)

  • Jeon, Myung-Su;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.85-93
    • /
    • 2008
  • In 22.9[kV]-y distribution systems, underground cables are provided with 3-wire loop multiple-point ground in which each coaxial-neutral line of the distribution cable lines(A, B, C phases) is 3-wire common grounded at every connecting section. In the underground cable distribution systems, circulating current flows in the coaxial-neutral lines and its magnitude amounts to about $40{\sim}50[%]$ load currents, even though loads are balanced. This paper presents a new ground method to overcome such a problem and a comprehensive analysis in tows of current capacity of power cables, induced voltage of cable sheath, and electromagnetic interference voltage from power cable lines.

The Development of Driving Algorithm for an Unmanned Vehicle with Multiple-GPS's (다중 GPS를 이용한 무인자동차의 주행 알고리즘 개발)

  • Moon, Hee-Chang;Son, Young-Jin;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • A navigation system is one of the important components of an unmanned ground vehicle (UGV). A GPS receiver collects data signals transmitted by (Earth orbiting) satellites. However, these data signals may contain many errors resulting misinformation and depending on one's position (environment), reception may be impossible. The proposed self-driven algorithm uses three low-cost GPS in order to minimize errors of existing inexpensive single GPS's driving algorithm. By using reliable final data, which is analyzed and combined from each of three GPS's received data signals, gathering a vehicle's steering performance information and its current pin-point position is improved even with error containing signals or from a place where signal gathering is impossible. The purpose of this thesis is to explain navigation system algorithm using multiple GPS and compass sensor and prove the algorithm through experiments.

Robust Airspeed Estimation of an Unpowered Gliding Vehicle by Using Multiple Model Kalman Filters (다중모델 칼만 필터를 이용한 무추력 비행체의 대기속도 추정)

  • Jin, Jae-Hyun;Park, Jung-Woo;Kim, Bu-Min;Kim, Byoung-Soo;Lee, Eun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.859-866
    • /
    • 2009
  • The article discusses an issue of estimating the airspeed of an autonomous flying vehicle. Airspeed is the difference between ground speed and wind speed. It is desirable to know any two among the three speeds for navigation, guidance and control of an autonomous vehicle. For example, ground speed and position are used to guide a vehicle to a target point and wind speed and airspeed are used to maximize flight performance such as a gliding range. However, the target vehicle has not an airspeed sensor but a ground speed sensor (GPS/INS). So airspeed or wind speed has to be estimated. Here, airspeed is to be estimated. A vehicle's dynamics and its dynamic parameters are used to estimate airspeed with attitude and angular speed measurements. Kalman filter is used for the estimation. There are also two major sources arousing a robust estimation problem; wind speed and altitude. Wind speed and direction depend on weather conditions. Altitude changes as a vehicle glides down to the ground. For one reference altitude, multiple model Kalman filters are pre-designed based on several reference airspeeds. We call this group of filters as a cluster. Filters of a cluster are activated simultaneously and probabilities are calculated for each filter. The probability indicates how much a filter matches with measurements. The final airspeed estimate is calculated by summing all estimates multiplied by probabilities. As a vehicle glides down to the ground, other clusters that have been designed based on other reference altitudes are activated. Some numerical simulations verify that the proposed method is effective to estimate airspeed.

Analysis of the shielded coplanar waveguide with multiple anisotropic substrates. (이방성 다층 유전체 기판을 갖는 차폐된 코프래너 도파관 해석)

  • 안광은;이상설
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.1250-1256
    • /
    • 1995
  • In this paper, shielded suspended coplanar waveguide with multiple anisotropic substrates is analyzed by the point matching method in the quasi-TEM mode appoximation. The characteristic impedance and the effective dielectric constant are calculated by varying the width of center strip and gap between the center strip and the ground strip. And also the characteristic parameters are calculated as a function of ${\varepsilon}_{x}/{\varepsilon}_{y}$) and a permitivity of the support substrate. Approaching the ground strip to infinity, the values of the characteristic parameters are found to be in good agreement with the other results by variational method.

  • PDF

A Case Study on Arrangement and Application of Public Facilities on Lower Levels in the Multiple-Family Housing (공동주택 단지 주동 저층부 공용시설의 배치와 활용 현황)

  • Hur, Bo-Hyung;Yang, Woo-Hyun
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2004.11a
    • /
    • pp.177-182
    • /
    • 2004
  • To cope with the serious housing shortage arising from rapid urbanization and industrialization, residential communities were constructed to meet the growing demand for housing. However, mass construction of these residential communities unavoidably resulted in uniformity standardization. In particular, for high rise apartment blocs using the ground floor as the center of the lower levels housings has raised problem of sunshine, airing, privacy. The research which it sees as the house low evaluation it is coming to become it plans a public facilities on lower levels of the building which keeps the quality which the ground connection and human scale back separates as, to solve the problem point of the lower levels house and the resident collective life which is smooth becomes accomplished.

  • PDF

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

An improved approach for multiple support response spectral analysis of a long-span high-pier railway bridge

  • Li, Lanping;bu, Yizhi;Jia, Hongyu;Zheng, Shixiong;Zhang, Deyi;Bi, Kaiming
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.193-200
    • /
    • 2017
  • To overcome the difficulty of performing multi-point response spectrum analysis for engineering structures under spatially varying ground motions (SVGM) using the general finite element code such as ANSYS, an approach has been developed by improving the modelling of the input ground motions in the spectral analysis. Based on the stochastic vibration analyses, the cross-power spectral density (c-PSD) matrix is adopted to model the stationary SVGM. The design response spectra are converted into the corresponding PSD model with appropriate coherency functions and apparent wave velocities. Then elements of c-PSD matrix are summarized in the row and the PSD matrix is transformed into the response spectra for a general spectral analysis. A long-span high-pier bridge under multiple support excitations is analyzed using the proposed approach considering the incoherence, wave-passage and site-response effects. The proposed approach is deemed to be an efficient numerical method that can be used for seismic analysis of large engineering structures under SVGM.

An Elimination Method Of the Circulating Current Flowing into Coaxial-Neutral Lines in 22.9[kV] CNCV Underground Cable Systems (22.9[kV] 지중배전계통케이블의 동심중성선에 흐르는 순환전류의 제거방안 및 효과)

  • Jeon, Myung-Su;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • In 22.9[kV]-y distribution systems, underground cables are provided with multiple-point ground in which each coaxial-neutral line of the distribution cable lines(A, B, C phases) is 3-wire common grounded. In the underground cable distribution systems, circulating current flows in the coaxial-neutral lines and its magnitude amounts to about $40{\sim}50[%]$ load currents, even though loads are balanced. Power loss due to the circulating current consequently reaches to about 76[%] total losses occurred in all conductor lines. This power loss provokes additional temperature rise of the underground cable lines and finally results in 20[%] reduction of the current capacity of the cables. This paper presents a new ground method to overcome such a problem. The proposed method eliminates the circulating current flowing in the coaxial-neutral line effectively. Measurement results confirmed from the practical site-test show validity and effectiveness of this research.

Analysis of Internal Loading at Multiple Robotic Systems

  • Chung Jae Heon;Yi Byung-Ju;Kim Whee Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1554-1567
    • /
    • 2005
  • When multiple robotics systems with several sub-chains grasp a common object, the inherent force redundancy provides a chance of utilizing internal loading. Analysis of grasping space based internal loading is proposed in this work since this method facilitates understanding the physical meaning of internal loadings in some applications, as compared to usual operational space based approach. Investigation of the internal loading for a triple manipulator has been few as ,compared to a dual manipulator. In this paper, types of the internal loading for dual and triple manipulator systems are investigated by using the reduced row echelon method to analyze the null space of those systems. No internal loading condition is derived and several load distribution schemes are compared through simulation. Furthermore, it is shown that the proposed scheme based on grasping space is applicable to analysis of special cases such as three-fingered and three-legged robots having a point contact with the grasped object or ground.

Video-based Height Measurements of Multiple Moving Objects

  • Jiang, Mingxin;Wang, Hongyu;Qiu, Tianshuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3196-3210
    • /
    • 2014
  • This paper presents a novel video metrology approach based on robust tracking. From videos acquired by an uncalibrated stationary camera, the foreground likelihood map is obtained by using the Codebook background modeling algorithm, and the multiple moving objects are tracked by a combined tracking algorithm. Then, we compute vanishing line of the ground plane and the vertical vanishing point of the scene, and extract the head feature points and the feet feature points in each frame of video sequences. Finally, we apply a single view mensuration algorithm to each of the frames to obtain height measurements and fuse the multi-frame measurements using RANSAC algorithm. Compared with other popular methods, our proposed algorithm does not require calibrating the camera, and can track the multiple moving objects when occlusion occurs. Therefore, it reduces the complexity of calculation and improves the accuracy of measurement simultaneously. The experimental results demonstrate that our method is effective and robust to occlusion.