• Title/Summary/Keyword: Multiple-Input multiple-output (MIMO)

Search Result 673, Processing Time 0.022 seconds

Implementation of Software Platform for STBC-OFDM based WiBro Systems (STBC-OFDM 기반의 WiBro 시스템 소프트웨어 플랫폼 구현)

  • Bae, Jung-Nam;Oh, Young-Chul;Yoo, Sang-Hoon;Wi, Hynn-Ho;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.525-530
    • /
    • 2008
  • There are a few core technologies to enable high-performance $4^{th}$ generation (4G) broadband wireless communication system. A multiple input multiple output (MIMO) provides high-rate transmission through expended channels by multiple array antennas in both sender and receiver side. Also orthogonal frequency division multiplexing (OFDM) is well-known as the most appropriate technique for high data rate transmission such as Mobile WiMAX and WLAN. Efficient decrease of inter-carrier interference (ISI) and inter-carrier interference (ICI) are the reasons for why OFDM is suitable for high-performance transmission, 4G mobile communication. In this paper, we mainly focus on two of objects, combination between MIMO and OFDM, and OFDM channel simulator using Ray-tracing algorithm. The results of this paper can be used implementation of a Wireless Software Platform for 4G Mobile Communication Systems.

  • PDF

Polar-Format-Processing-Based Moving Target Imaging in MIMO Radar Environment (MIMO 레이다 환경에서 Polar Format Processing 기반 이동표적 이미징)

  • Choi, Sang-Hyun;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.124-131
    • /
    • 2019
  • This study presents an imaging algorithm that can provide an image of a moving target in a multiple-input-multiple-output radar environment where multiple transmitting and receiving radars are fixed on the ground. The proposed algorithm, which is based on polar format processing using plane wave approximation, is shown to provide an unaliased image by using multiple transmitting radars even when the distances between the receiving radars are relatively large. We derive the conditions necessary to deploy the transmitting radars by which the resolution of the reconstructed image can be improved, while simultaneously reducing aliasing artifacts. Moreover, we offer a means of separating out each transmitting radar target echo. Finally, the performance of the proposed system is verified through a simulation.

Multi-Parameter Based Scheduling for Multi-user MIMO Systems

  • Chanthirasekaran, K.;Bhagyaveni, M.A.;Parvathy, L. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2406-2412
    • /
    • 2015
  • Multi-user multi-input multi-output (MU-MIMO) system has attracted the 4th generation wireless network as one of core technique for performance enrichment. In this system rate control is a challenging problem and another problem is optimization. Proper scheduling can resolve these problems by deciding which set of user and at which rate the users send their data. This paper proposes a new multi-parameter based scheduling (MPS) for downlink multi-user multiple-input multiple-output (MU-MIMO) system under space-time block coding (STBC) transmissions. Goal of this MPS scheme is to offer improved link level performance in terms of a low average bit error rate (BER), high packet delivery ratio (PDR) with improved resource utilization and service fairness among the user. This scheme allows the set of users to send data based on their channel quality and their demand rates. Simulation compares the MPS performance with other scheduling scheme such as fair scheduling (FS), normalized priority scheduling (NPS) and threshold based fair scheduling (TFS). The results obtained prove that MPS has significant improvement in average BER performance with improved resource utilization and fairness as compared to the other scheduling scheme.

Approaching Near-Capacity on a Multi-Antenna Channel using Successive Decoding and Interference Cancellation Receivers

  • Sellathurai, Mathini;Guinand, Paul;Lodge, John
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.116-123
    • /
    • 2003
  • In this paper, we address the problem of designing multirate codes for a multiple-input and multiple-output (MIMO) system by restricting the receiver to be a successive decoding and interference cancellation type, when each of the antennas is encoded independently. Furthermore, it is assumed that the receiver knows the instantaneous fading channel states but the transmitter does not have access to them. It is well known that, in theory, minimummean- square error (MMSE) based successive decoding of multiple access (in multi-user communications) and MIMO channels achieves the total channel capacity. However, for this scheme to perform optimally, the optimal rates of each antenna (per-antenna rates) must be known at the transmitter. We show that the optimal per-antenna rates at the transmitter can be estimated using only the statistical characteristics of the MIMO channel in time-varying Rayleigh MIMO channel environments. Based on the results, multirate codes are designed using punctured turbo codes for a horizontal codedMIMOsystem. Simulation results show performances within about one to two dBs of MIMO channel capacity.

Sum-Rate Improvement Method Using Quasi-Orthogonal Beam Pairs for UCA MIMO Transmission (UCA MIMO 전송 시 준직교적 빔 쌍을 활용한 합 전송률 향상 방안)

  • Yang, Jiyeong;Kim, Huiwon;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.32-35
    • /
    • 2018
  • Massive multiple-input multiple-output (MIMO) transmission is an essential technique for achieving the high bandwidth efficiency required in 5G mobile communication systems. Various forms of arrays can be used as the number of antenna elements increases for massive MIMO transmission. In this letter, we propose a beamforming algorithm applicable to multiuser MIMO transmission using uniform circular arrays. By employing quasi-orthogonal beam pairs obtained from the inter-beam correlation information, we minimize inter-user interference and evaluate the resulting performance gain.

A Generalized Blind Adaptive Multi-User Detection Algorithm for Multipath Rayleigh Fading Channel Employed in a MIMO System

  • Fahmy Yasmine A.;Mourad Hebat-Allah M.;Al-Hussaini Emad K.
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.290-296
    • /
    • 2006
  • In this paper, a generalized blind adaptive algorithm is introduced for multi-user detection of direct sequence code division multiple access (OS-COMA) wireless communication systems. The main property of the proposed algorithm is its ability to resolve the multipath fading channel resulting in inter symbol interference (ISI) as well as multiple access interference (MAI). Other remarkable properties are its low complexity and mitigation to the near-far problem as well as its insensitivity to asynchronous transmission. The proposed system is based on the minimization of the output energy and convergence to the minimum mean square error (MMSE) detector. It is blind in the sense that it needs no knowledge of the other users' signatures, only the intended user signature and timing are required. Furthermore, the convergence of the minimum output energy (MOE) detector to the MMSE detector is analytically proven in case of M-ary PSK. Depicted results show that the performance of the generalized system dominates those previously considered. Further improvements are obtained when multiple input multiple output (MIMO) technique is employed.

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

Estimation and Analysis of MIMO Channel Parameters using the SAGE Algorithm (SAGE 알고리즘을 이용한 MIMO 채널 파라미터 추정과 분석)

  • Kim, Joo-Seok;Yeo, Bong-Gu;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.79-84
    • /
    • 2017
  • This paper is a multi-input multi-path (Multiple-input multiple-output: MIMO) using a space-alternating generalized expectation maximization(SAGE) algorithm in the parameter channel and determine the channel estimation performance. Estimated by the algorithm, SAGE time-varying channel environment, the channel parameters estimated from the parameters of the channel measured in the island region 781 of the band in order to compare the performance and compares the original data. This allows you to check the performance of the algorithm SAGE and is highly stable to delay spread (Delay Spread), the diffusion angle of arrival (Arrive of Angular Spread) performance in terms of accuracy down through the SAGE algorithm for estimating a more general calculation parameters.

Minimum Distance based Precoder Design for General MIMO Systems using Gram Matrix

  • Chen, Zhiyong;Xu, Xiaodong
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.634-646
    • /
    • 2015
  • Assuming perfect channel state information (CSI) at the transmitter and receiver, the optimization problem of maximizing the minimum Euclidean distance between two received signals by a linear precoder is considered for multiple-input multiple-output (MIMO) systems with arbitrary dimensions and arbitraryary quadrature amplitude modulation (QAM) input. A general precoding framework is first presented based on the Gram matrix, which is shown for 2-dimensional (2-D) and 3-dimensional (3-D) MIMO systems when employing the ellipse expanding method (EEM). An extended precoder for high-dimensional MIMO system is proposed following the precoding framework, where the Gram matrix for high-dimensional precoding matrix can be generated through those chosen from 2-D and 3-D results in association with a permutation matrix. A complexity-reduced maximum likelihood detector is also obtained according to the special structure of the proposed precoder. The analytical and numerical results indicate that the proposed precoder outperforms the other precoding schemes in terms of both minimum distance and bit error rate (BER).