• Title/Summary/Keyword: Multiple-Input

Search Result 2,083, Processing Time 0.028 seconds

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

A Joint Channel Estimation and Data Detection for a MIMO Wireless Communication System via Sphere Decoding

  • Patil, Gajanan R.;Kokate, Vishwanath K.
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1029-1042
    • /
    • 2017
  • A joint channel estimation and data detection technique for a multiple input multiple output (MIMO) wireless communication system is proposed. It combines the least square (LS) training based channel estimation (TBCE) scheme with sphere decoding. In this new approach, channel estimation is enhanced with the help of blind symbols, which are selected based on their correctness. The correctness is determined via sphere decoding. The performance of the new scheme is studied through simulation in terms of the bit error rate (BER). The results show that the proposed channel estimation has comparable performance and better computational complexity over the existing semi-blind channel estimation (SBCE) method.

A Comparative Study of List Sphere Decoders for MIMO Systems

  • Pham, Van-Su;Yoon, Giwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.143-146
    • /
    • 2009
  • In this paper, we investigated the list sphere decoders (LSD) for multiple-input multiple-output (MIMO) systems. We showed that the ordering procedures play an important role in LSD in order to achieve the low complexity without degrading the bit-error-rate (BER) performance. Then, we proposed a novel ordering algorithm for the LSD which uses a look-up table and simply comparative operations. Comparative results in terms of BER performance and computational complexity are provided through computer simulations.

  • PDF

Zero forcing based sphere decoder for generalized spatial modulation systems

  • Jafarpoor, Sara;Fouladian, Majid;Neinavaie, Mohammad
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.145-159
    • /
    • 2019
  • To reduce the number of radio frequency (RF) chains in multiple input multiple output (MIMO) systems, generalized spatial modulation (GSM) techniques have been proposed in the literature. In this paper, we propose a zero-forcing (ZF)-based detector, which performs an initial pruning of the search tree that will be considered as the initial condition in a sphere decoding (SD) algorithm. The proposed method significantly reduces the computational complexity of GSM systems while achieving a near maximum likelihood (ML) performance. We analyze the performance of the proposed method and provide an analytic performance difference between the proposed method and the ML detector. Simulation results show that the performance of the proposed method is very close to that of the ML detector, while achieving a significant computational complexity reduction in comparison with the conventional SD method, in terms of the number of visited nodes. We also present some simulations to assess the accuracy of our theoretical results.

Spectral Efficiency of Full-Duplex Wireless Backhaul with Hardware Impaired Massive MIMO for Heterogeneous Cellular Networks

  • Anokye, Prince;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.13-25
    • /
    • 2018
  • The paper analyzes the sum spectral efficiency (SE) for a heterogeneous cellular network (HetNet) which has the backhaul, provided with wireless full-duplex massive multiple-input multiple-out (MIMO) with hardware distortions. We derive approximate expressions to obtain the uplink/downlink sum SE of the backhaul. The analytic results have been shown to be exact when compared to Monte Carlo simulations. From the analysis, it is shown that the desired signal and the hardware distortion noise have the same order. The sum SE generally improves when the number of receive antennas increases but degrades when the hardware quality reduces. A sum SE performance ceiling is introduced by the hardware quality level.

Low-Overhead Feedback Topology Design for the K-User MIMO Interference Alignment

  • Jin, Jin;Gao, Xiang-Chuan;Li, Xingwang;Cavalcante, Charles Casimiro;Li, Lihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5304-5322
    • /
    • 2018
  • Since designing a feedback topology is a practical way to implement interference alignment at reduced cost of channel state information (CSI) feedback, six feedback topologies have been presented in prior works for a K-user multiple-input multiple-output interference channel. To fully reveal the potential benefits of the feedback topology in terms of the saving of CSI overhead, we propose a new feedback topology in this paper. By efficiently performing dimensionality-decreasing at the transmitter side and aligning interference signals at a subset of receivers, we show that the proposed feedback topology obtains substantial reduction of feedback cost over the existing six feedback designs under the same antenna configuration.

PSO-optimized Pareto and Nash equilibrium gaming-based power allocation technique for multistatic radar network

  • Harikala, Thoka;Narayana, Ravinutala Satya
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • At present, multiple input multiple output radars offer accurate target detection and better target parameter estimation with higher resolution in high-speed wireless communication systems. This study focuses primarily on power allocation to improve the performance of radars owing to the sparsity of targets in the spatial velocity domain. First, the radars are clustered using the kernel fuzzy C-means algorithm. Next, cooperative and noncooperative clusters are extracted based on the distance measured using the kernel fuzzy C-means algorithm. The power is allocated to cooperative clusters using the Pareto optimality particle swarm optimization algorithm. In addition, the Nash equilibrium particle swarm optimization algorithm is used for allocating power in the noncooperative clusters. The process of allocating power to cooperative and noncooperative clusters reduces the overall transmission power of the radars. In the experimental section, the proposed method obtained the power consumption of 0.014 to 0.0119 at K = 2, M = 3 and K = 2, M = 3, which is better compared to the existing methodologies-generalized Nash game and cooperative and noncooperative game theory.

Incremental Antenna Selection Based on Lattice-Reduction for Spatial Multiplexing MIMO Systems

  • Kim, Sangchoon
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Antenna selection is a method to enhance the performance of spatial multiplexing multiple-input multiple-output (MIMO) systems, which can achieve the diversity order of the full MIMO systems. Although various selection criteria have been studied in the literature, they should be adjusted to the detection operation implemented at the receiver. In this paper, antenna selection methods that optimize the post-processing signal-to-noise ratio (SNR) and eigenvalue are considered for the lattice reduction (LR)-based receiver. To develop a complexity-efficient antenna selection algorithm, the incremental selection strategy is adopted. Moreover, for improvement of performance, an additional iterative selection method is presented in combination with an incremental strategy.

Limited Feedback Interference Alignment in MIMO Power Line Communication with Common-mode Reception

  • Ahiadormey, Roger Kwao;Anokye, Prince;Park, Seok-Hwan;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • This paper considers a multiple-input multiple-output (MIMO) power line communication (PLC) network where interference alignment (IA) technique is used to mitigate the interference that arises in multi-user networks. IA as a precoding technique requires perfect channel state information (CSI) to achieve maximum multiplexing gain. Due to the common-mode reception at the receiver ports, we assume imperfect CSI for the IA precoding design. Here, the CSI is quantized and sent via feedback to the transmit ports. For different levels of CSI quantization, we evaluate the performance of various IA algorithms via Monte Carlo simulations. Simulation results reveal the superior performance of the proposed scheme due to common-mode reception in IA MIMO PLC networks. It is shown that for a quantization level of 5 bits, the CM reception improves the sum-rate by up to 70%.

Input Voltage Sharing Control for Input-Series-Output-Parallel DC-DC Converters without Input Voltage Sensors

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.83-87
    • /
    • 2012
  • Input-series-output-parallel (ISOP) modular converters consisting of multiple modular DC/DC converters can enable low voltage rating switches for use in high voltage input applications. In this paper, an input voltage sharing control strategy for input-series-output-parallel (ISOP) full-bridge (FB) DC/DC converters is proposed. By sensing the difference in the input current of two modules, the system can achieve input voltage sharing for DC-DC modules. The effectiveness of the proposed control strategy is verified by simulation and experimental results obtained with a 200w-50kHz prototype.