• 제목/요약/키워드: Multiple solutions

검색결과 807건 처리시간 0.033초

MULTIPLE SOLUTIONS FOR A SUSPENDING BEAM EQUATION AND THE GEOMETRY OF THE MAPPING

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제17권2호
    • /
    • pp.211-218
    • /
    • 2009
  • We investigate the multiple solutions for a suspending beam equation with jumping nonlinearity crossing three eigenvalues, with Dirichlet boundary condition and periodic condition. We show the existence of at least six nontrivial periodic solutions for the equation by using the finite dimensional reduction method and the geometry of the mapping.

  • PDF

MULTIPLE SOLUTIONS FOR THE NONLINEAR HAMILTONIAN SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제17권4호
    • /
    • pp.507-519
    • /
    • 2009
  • We give a theorem of the existence of the multiple solutions of the Hamiltonian system with the square growth nonlinearity. We show the existence of m solutions of the Hamiltonian system when the square growth nonlinearity satisfies some given conditions. We use critical point theory induced from the invariant function and invariant linear subspace.

  • PDF

MULTIPLE POSITIVE SOLUTIONS OF INTEGRAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Liu, Xiping;Jin, Jingfu;Jia, Mei
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.305-320
    • /
    • 2012
  • In this paper, we study a class of integral boundary value problems for fractional differential equations. By using some fixed point theorems, the results of existence of at least three positive solutions for the boundary value problems are obtained.

MULTIPLE SOLUTIONS FOR THE NONLINEAR PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제22권2호
    • /
    • pp.251-259
    • /
    • 2009
  • We investigate the multiple solutions for the nonlinear parabolic boundary value problem with jumping nonlinearity crossing two eigenvalues. We show the existence of at least four nontrivial periodic solutions for the parabolic boundary value problem. We restrict ourselves to the real Hilbert space and obtain this result by the geometry of the mapping.

  • PDF

MULTIPLE POSITIVE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEM WITH FINITE FRACTIONAL DIFFERENCE

  • He, Yansheng;Hou, Chengmin
    • 충청수학회지
    • /
    • 제28권2호
    • /
    • pp.173-186
    • /
    • 2015
  • In this paper, we consider a discrete fractional nonlinear boundary value problem in which nonlinear term f is involved with the fractional order difference. We transform the fractional boundary value problem into boundary value problem of integer order difference equation. By using a generalization of Leggett-Williams fixed-point theorem due to Avery and Peterson, we provide sufficient conditions for the existence of at least three positive solutions.

MULTIPLE PERIODIC SOLUTIONS FOR EIGENVALUE PROBLEMS WITH A p-LAPLACIAN AND NON-SMOOTH POTENTIAL

  • Zhang, Guoqing;Liu, Sanyang
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.213-221
    • /
    • 2011
  • In this paper, we establish a multiple critical points theorem for a one-parameter family of non-smooth functionals. The obtained result is then exploited to prove a multiplicity result for a class of periodic eigenvalue problems driven by the p-Laplacian and with a non-smooth potential. Under suitable assumptions, we locate an open subinterval of the eigenvalue.

MULTIPLE EXISTENCE AND UNIQUENESS OF AN ELLIPTIC EQUATION WITH EXPONENTIAL NONLINEARITY

  • CHOE KWANGSEOK;NAM HEE-SEOK
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제12권3호
    • /
    • pp.179-191
    • /
    • 2005
  • In this paper we consider a Dirichlet problem in the unit disk. We show that the equation has a unique or multiple solutions according to the range of the parameter. Moreover, we prove that the equation admits a nonradial bifurcation at each branch of radial solutions.

  • PDF

Vibrations of an axially accelerating, multiple supported flexible beam

  • Kural, S.;Ozkaya, E.
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.521-538
    • /
    • 2012
  • In this study, the transverse vibrations of an axially moving flexible beams resting on multiple supports are investigated. The time-dependent velocity is assumed to vary harmonically about a constant mean velocity. Simple-simple, fixed-fixed, simple-simple-simple and fixed-simple-fixed boundary conditions are considered. The equation of motion becomes independent from geometry and material properties and boundary conditions, since equation is expressed in terms of dimensionless quantities. Then the equation is obtained by assuming small flexural rigidity. For this case, the fourth order spatial derivative multiplies a small parameter; the mathematical model converts to a boundary layer type of problem. Perturbation techniques (The Method of Multiple Scales and The Method of Matched Asymptotic Expansions) are applied to the equation of motion to obtain approximate analytical solutions. Outer expansion solution is obtained by using MMS (The Method of Multiple Scales) and it is observed that this solution does not satisfy the boundary conditions for moment and incline. In order to eliminate this problem, inner solutions are obtained by employing a second expansion near the both ends of the flexible beam. Then the outer and the inner expansion solutions are combined to obtain composite solution which approximately satisfying all the boundary conditions. Effects of axial speed and flexural rigidity on first and second natural frequency of system are investigated. And obtained results are compared with older studies.