• Title/Summary/Keyword: Multiple response model

Search Result 474, Processing Time 0.024 seconds

Response Surface Approximation for Fatigue Life Prediction and Its Application to Compromise Decision Support Problem (피로수명예측을 위한 반응표면근사화와 절충의사결정문제의 응용)

  • Baek, Seok-Heum;Cho, Seok-Swoo;Jang, Deuk-Yul;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1187-1192
    • /
    • 2008
  • In this paper, a versatile multi-objective optimization concept for fatigue life prediction is introduced. Multi-objective decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.

  • PDF

Distributed Structural Analysis Method on Network of PCs using Substructuring Techniques (부구조기법을 이용한 PC level 분산구조해석법)

  • 박효선;박성무;성창원;김재홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.53-60
    • /
    • 1998
  • Efficiency of design process for large scale structures highly depends on the development of efficient structural analysis and structural response control algorithms because a successful design involves a number of structural analysis based on iterative structural response control process. In this paper, distributed structural analysis model on multiple personal computers connected by ethernet network is presented. To reduce communication cost required in the process of analysis, substructuring techniques are adopted to evenly distribute computational loads on each processor. With its applications on structural analysis of plane frame structures, performance of the proposed computational model are presented in detail.

  • PDF

Optimization of Shroud Shape and Fan Location for Increasing Exhaust Flow Rate of Air Conditioner Outdoor Unit (실외기 토출 유량 증대를 위한 Shroud 형상 및 휀 위치 최적 설계)

  • Ryu, Ki-Jung;Kim, Yoo-Yil;Lee, Kwan-Soo;Cha, Woo-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.599-605
    • /
    • 2009
  • This paper presents a numerical evaluation of the flow rate of air conditioner outdoor unit by investigating the effects of fan location and shroud shape. To determine optimal design parameters, we investigated the exhaust flow rate by changing shroud height, fan height, fan guide height, and fan width. The 3rd order central composite design was performed to select three most important parameters affecting the exhaust flow rate. According to the result of response surface method, the exhaust flow rate of the optimum model increased by 6.25% compared to that of the base model.

Superharmonic and subharmonic vibration resonances of rotating stiffened FGM truncated conical shells

  • Hamid Aris;Habib Ahmadi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.545-562
    • /
    • 2023
  • In this work, superharmonic and subharmonic resonance of rotating stiffened FGM truncated conical shells exposed to harmonic excitation in a thermal environment is investigated. Utilizing classical shell theory considering Coriolis acceleration and the centrifugal force, the governing equations are extracted. Non-linear model is formulated employing the von Kármán non-linear relations. In this study, to model the stiffener effects the smeared stiffened technique is utilized. The non-linear partial differential equations are discretized into non-linear ordinary differential equations by applying Galerkin's method. The method of multiple scales is utilized to examine the non-linear superharmonic and subharmonic resonances behavior of the conical shells. In this regard, the effects of the rotating speed of the shell on the frequency response plot are investigated. Also, the effects of different semi-vertex angles, force amplitude, volume-fraction index, and temperature variations on the frequency-response graph are examined for different rotating speeds of the stiffened FGM truncated conical shells.

Global Optimization Using Kriging Metamodel and DE algorithm (크리깅 메타모델과 미분진화 알고리듬을 이용한 전역최적설계)

  • Lee, Chang-Jin;Jung, Jae-Jun;Lee, Kwang-Ki;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.537-542
    • /
    • 2001
  • In recent engineering, the designer has become more and more dependent on computer simulation. But defining exact model using computer simulation is too expensive and time consuming in the complicate systems. Thus, designers often use approximation models, which express the relation between design variables and response variables. These models are called metamodel. In this paper, we introduce one of the metamodel, named Kriging. This model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. This class of interpolating model has flexibility to model response data with multiple local extreme. By reason of this multi modality, we can't use any gradient-based optimization algorithm to find global extreme value of this model. Thus we have to introduce global optimization algorithm. To do this, we introduce DE(Differential Evolution). DE algorithm is developed by Ken Price and Rainer Storn, and it has recently proven to be an efficient method for optimizing real-valued multi-modal objective functions. This algorithm is similar to GA(Genetic Algorithm) in populating points, crossing over, and mutating. But it introduces vector concept in populating process. So it is very simple and easy to use. Finally, we show how we determine Kriging metamodel and find global extreme value through two mathematical examples.

  • PDF

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

Hypothesis Proposal about Predictive Factors and Optimal Age for Response to Herbal Medicine Treatment for Height Gain in Children: a Retrospective Review

  • Leem, Jungtae;Kim, Jeeyeun;Suh, Kyeungsuk;Lim, Youngkwern;Lee, Junhee
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.16-29
    • /
    • 2018
  • Introduction: We aimed to investigate the predictive factors and optimal age for response to herbal medicine treatment for height gain in children. Methods: This retrospective chart review included 61 children (age range, 5-16 years) treated for height gain between 2011 and 2015. A predictive model was established by multiple linear regression analysis. Dependent variables were defined by the differences in percentile before and after herbal medicine treatment. The optimal cutoff value of patient age was determined by receiver operating curve analysis. Results : The age of initiation of herbal medicine therapy (p = 0.012) and administration of Forsythiae fructus (p = 0.002) were significant variables for treatment response. The adjusted R2 value was 0.231. The mean ages of the responder and non-responder groups were significantly different (p = 0.023). The optimal cutoff value of age for predicting treatment response was 9.75 years. Treatment response was better among children below 9.75 years of age. Conclusions: Patient age and administration of Forsythiae fructus were identified as determinants of response to herbal medicine treatment. Treatment of rhinitis and initiation of height gain treatment at an early age are critical for better response. These findings will provide fundamental data for further research.

An Embedded Systems Implementation Technique based on Multiple Finite State Machine Modeling using Microcontroller Interrupts (마이크로컨트롤러 인터럽트를 사용한 임베디드시스템의 다중 상태기계 모델링 기반 구현 기법)

  • Lee, Sang Seol
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.75-86
    • /
    • 2013
  • This paper presents a technique to implement embedded systems using interrupts of the one-chip microcontroller with many peripherals based on a multiple finite state machines model. The multiple finite state machine model utilizes the structure of FSMD used for hardware design and the features of flow control by interrupts. The main finite state machine corresponds to the main program and the sub-state machines corresponds to the interrupt subroutines. Therefore, interrupts from the peripherals can be processed immediately in the sub-state machines. The request and reply variables are used to interface between the finite state machines. Additional operating system is not necessary for the context switching between the main state machine and the sub-state machine, because the flow-control caused by interrupt can be replaced with the switching. An embedded system modeled on multiple finite state machine with ASM charts can be easily implemented by the conversion of ASM charts into C-language programs. This implementation technique can be easily adopted to the hardware oriented embedded systems because of the detail description of the model and the fast response to the interrupt events in the sub-state machine.

Improvement Mechanism of Security Monitoring and Control Model Using Multiple Search Engines (다중 검색엔진을 활용한 보안관제 모델 개선방안)

  • Lee, Je-Kook;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.284-291
    • /
    • 2021
  • As the current security monitoring system is operated as a passive system only for response after an attacker's attack, it is common to respond to intrusion incidents after an attack occurs. In particular, when new assets are added and actual services are performed, there is a limit to vulnerability testing and pre-defense from the point of view of an actual hacker. In this paper, a new security monitoring model has been proposed that uses multiple hacking-related search engines to add proactive vulnerability response functions of protected assets. In other words, using multiple search engines with general purpose or special purpose, special vulnerabilities of the assets to be protected are checked in advance, and the vulnerabilities of the assets that have appeared as a result of the check are removed in advance. In addition, the function of pre-checking the objective attack vulnerabilities of the protected assets recognized from the point of view of the actual hacker, and the function of discovering and removing a wide range of system-related vulnerabilities located in the IP band in advance were additionally presented.

Portable Piezoelectric Film-based Glove Sensor System for Detecting Internal Defects of Watermelon (수박 내부결함판정을 위한 휴대형 압전형 장갑 센서시스템)

  • Choi, Dong-Soo;Lee, Young-Hee;Choi, Seung-Ryul;Kim, Hak-Jin;Park, Jong-Min;Kato, Koro
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2008
  • Dynamic excitation and response analysis is an acceptable method to determine some of physical properties of agricultural product for quality evaluation. There is a difference in the internal viscoelasticity between sound and defective fruits due to the difference of geometric structures, thereby showing different vibration characteristics. This study was carried out to develop a portable piezoelectric film-based glove sensor system that can separate internally damaged watermelons from sound ones using an acoustic impulse response technique. Two piezoelectric sensors based on polyvinylidene fluoride (PVDF) films to measure an impact force and vibration response were separately mounted on each glove. Various signal parameters including number of peaks, energy ratio, standard deviation of peak to peak distance, zero-crossing rate, and integral value of peaks were examined to develop a regression-estimated model. When using SMLR (Stepwise Multiple Linear Regression) analysis in SAS, three parameters, i.e., zeros value, number of peaks, and standard deviation of peaks were selected as usable factors with a coefficient of determination ($r^2$) of 0.92 and a standard error of calibration (SEC) of 0.15. In the validation tests using twenty watermelon samples (sound 9, defective 11), the developed model provided good capability showing a classification accuracy of 95%.