• Title/Summary/Keyword: Multiple jet

Search Result 102, Processing Time 0.024 seconds

Heat transfer characteristics of impinging flat plate of multiple slot jets by changing of jet-to-jet distance (배열 슬롯제트의 노즐간격 변화에 따른 충돌면에서의 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo;Hong, Sung-Ho;Ko, Wan-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.534-539
    • /
    • 2001
  • An experimental investigation of heat transfer characteristics on confined jet impinging plate using multiple slot jets has been performed. The effects of jet Reynolds numbers(Re=2000, 3950, 5900, 7900), dimensionlesss slot-to-plate distances(H/B=2, 4, 6, 8) and jet-to-jet distances(S=16B, 20B, 24B, 30B) on the local and average heat transfer coefficients have been examined. To clarify local heat transfer characteristics, naphthalene sublimation technique were used. From the experimental results, it was found that the local and average heat transfer rates increase with increasing jet Reynolds number. Measurements of local heat transfer coefficients produced by multiple of slot jets have given an indication of the nature of the interaction between jets and of the uniformity of heat transfer obtainable with various arrangements. At S/B=20, Re=7900 and H/B=6, maximum average Nusselt number is obtained.

  • PDF

Effect of Flame Interaction on the NO Emission (다수 상호작용 화염의 공해배출물 특성)

  • Kim Jin Hyun;Lee Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.730-736
    • /
    • 2005
  • It has been reported that the interacting multiple jet flames of propane fuel are not extinguished even at the choking velocity at the nozzle exit if eight small nozzles are arranged along the imaginary circle of $40{\sim}72$ times the diameter of single nozzle. In this research, experiments were conducted to know the NO and CO emission characteristics of the interacting flames. Measurements along the centerline of the flame revealed that decrease in CO concentration was followed by the NO decrease and $O_2$ increase. It was found that interacting flame emitted less NO than that of similar area single jet flame. Also, NO emission of partially premixed interacting flame was decreased up to $17\%$ of that of non-premixed multiple jet flame. Though the mechanism of the NO reduction was not clear from this experiment, it's been shown that partially premixed multiple jet flames could be used to achieve clean and highly stable combustion.

Heat transfer characteristics of multiple slot jets at the surface of protruding heated blocks (돌출 발열블록 표면에서의 배열 충돌제트에 의한 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo;Hong, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.274-279
    • /
    • 2001
  • An experimental investigation of heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impinging multiple slot jets has been performed. The effects of jet-to-jet distances(S=16B, 24B), dimensionless nozzle-to-block distances(H/B=2, 6) and jet Reynolds numbers(Re=2000, 3900, 5800, 7800) on the local and average heat transfer coefficients have been examined with five isothermally heated blocks at streamwise block spacing(p/w=1). To clarify local heat transfer characteristics, naphthalene sublimation technique was used. From the results, it was found that the local and average heat transfer of heated blocks increases with decreasing jet-to-jet distance and increasing jet Reynolds number. Measurements of local heat transfer coefficients have given an indication of the nature of the interaction between jets and of the uniformity of heat transfer obtainable with various arrangements. In the case of S/B=16, H/B=6 and Re=7800, maximum average Nusselt number of overall blocks was obtained.

  • PDF

The Review of Studies on Heat Transfer in Impinging Jet

  • Hong, Sung-Kook;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.196-205
    • /
    • 2005
  • In this paper, recent research trend on heat transfer in impinging jet is reviewed. We focused on submerged jet that air issued into air or liquid issued into liquid. To control and enhance the heat transfer in single jet, researchers have performed a lot of experiments by considering the nozzle geometry, impinging surface and active method such as jet vibration, secondary injection and suction flow. The studies on multiple jet have been mainly focused on finding out the optimum condition and on investigating many different factors concerned with application condition (crossflow, rotation and geometry etc.) and combined techniques (rib turbulator, pin fin, dimple and effusion hole etc.). All most experiments showed the detailed heat transfer data by using liquid crystal method, infrared camera technique and naphthalene sublimation method. Many numerical calculations have been performed to investigate the flow and heat transfer characteristics in laminar jet region. Various turbulence models such as $k-\varepsilon-\bar{\nu^2}$, modified $k-\varepsilon-f_{\mu}$ were applied to the calculation for turbulent jet and the predicted results showed a good agreement with the experimental data. Although a lot of studies on impinging jet have performed consistently up to recently, further studies are still required to understand the flow and heat transfer characteristics more accurately, and to give a guideline for optimum impinging jet design in various applications.

Numerical Study of Flame Structures and Conditional Statistics in Turbulent Spray Jet Combustion (난류분무제트연소에서의 화염구조와 조건평균 통계에 대한 수치적 연구)

  • Seo, Jaeyeob;Huh, Kang Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.46-52
    • /
    • 2012
  • 3D DNS is performed for n-heptane spray turbulent jet combustion. Diesel-like conditions are considered including single and multiple injections. Conditional statistics are obtained for multiple Lagrangian flame groups of sequentially evaporating fuel. Each fuel group represents the conditional statistics of an independent Lagrangian flame group. Sequentially evaporating fuel goes through different histories and residence times over the ignition delay period. Multiple flame groups are required for accurate description of combustion of a spray jet that goes through a long injection duration or multiple injections.

Numerical Analysis on the Heat Transfer Characteristics of Multiple Slot Jets at the Surface of Protruding Heated Blocks (충돌제트의 간격변화에 따른 발열블록 표면에서의 열전달 특성에 관한 수치해석)

  • 박시우;정인기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.229-237
    • /
    • 2003
  • The flow and heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impingement multiple slot jets were computationally investigated Numerical predictions were made for round-edged nozzles at several nozzle-to-target plate spacings and jet-to-jet distances, with turbulent jet Reynolds numbers ranging from 2000 to 7800. The commercial finite-volume code FLUENT was used to solve the heat transfer characteristics and flow fields using a RNG $\textsc{k}-\varepsilon$ model. The computed heat transfer characteristics at the surface of heated blocks were in good qualitative agreement with previous experimental data The results of heat transfer characteristics on the surface of protruding heated blocks are important considerations in electronics Packaging design.

A Numerical Study on the Heat Transfer Characteristics of the Multiple Slot Impinging Jet (다양한 노즐 수 변화에 따른 충돌 제트의 열전달 특성에 관한 수치적 연구)

  • Kim, Sang-Keun;Ha, Man-Yeong;Son, Chang-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.754-761
    • /
    • 2011
  • The present study numerically investigates two-dimensional flow and heat transfer in the multiple confined impinging slot jet. Numerical simulations are performed for the different Reynolds numbers(Re=100 and 200) in the range of nozzles from 1 to 9 and height ratios(H/D) from 2 to 5, where H/D is the ratio of the channel height to the slot width. The vector plots of velocity profile, stagnation and averaged Nusselt number distributions are presented in this paper. The dependency of thermal fields on the Reynolds number, nozzle number and height ratio can be clarified by observing the Nusselt number as heat transfer characteristic at the stagnation point and impingement surface. The Nusselt number at the stagnation point of the central slot shows unsteadiness at H/D=3 and Re=200. The value of Nusselt number at the stagnation point of the central slot decreases with higher Reynolds number and number of nozzle although overall area averaged Nusselt number increases. Hence careful selection of geometrical parameters and number of nozzle are necessary for optimization of the heat transfer performance of multiple slot impinging jet.

Development Of Four-Dimensional Digital Speckle Tomography For Experimental Analysis Of High-Speed Helium Jet Flow (고속 헬륨 제트 유동의 실험적 분석을 위한 4차원 디지털 스펙클 토모그래피 기법 개발)

  • Ko, Han-Seo;Kim, Yong-Jae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.193-203
    • /
    • 2006
  • A high-speed and initial helium jet flow has been analyzed by a developed four-dimensional digital speckle tomography. Multiple high-speed cameras have been used to capture movements of speckles in multiple angles of view simultaneously because a shape of a nozzle for the jet flow is asymmetric and the initial jet flow is fast and unsteady. The speckle movements between no flow and helium jet flow from the asymmetric nozzle controlled by a solenoid valve have been obtained by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The four-dimensional density fields for the high-speed helium jet flow have been reconstructed from the deflection angles by a developed real-time tomography method.

NUMERICAL STUDY ON COOLING CHARACTERISTICS OF MULTIPLE IMPINGING JETS INCLUDING THE EFFECT OF TURBULENCE (난류 효과를 포함한 다중 충돌 제트의 냉각 특성에 대한 수치적 연구)

  • Jeon, J.H.;Son, G.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.321-328
    • /
    • 2009
  • Free surface impinging jet on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The free surface of liquid-gas interface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further improved by employing a nonequilibrium $\kappa-\varepsilon$ turbulence model including the effect of low Reynolds number. The computations are made to investigate the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

Study on the Characteristics of Heat Transfer with Array of Multiple Impinging Jet Nozzle (충돌제트 노즐의 다중 배열 형상에 따른 열전달 특성)

  • Kim, D.K.;Son, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.32-37
    • /
    • 2006
  • In this paper, we present the flow and heat transfer characteristics with the array of impinging jet nozzles by using the numerical computation and experiment. Numerical solutions were obtained for dimensionless gap H=6, dimensionless outlet length L=10 and Reynolds number Re=1500 by using the commercial CFD code, CFX-5. Experimental and numerical results were agreed well with each other. It was found that the impinging jet with circular array nozzles generated the uniform heat transfer area and the maximum heat transfer is higher than rectangular array nozzles for certain parameter sets. It is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer.

  • PDF