Numerical Study of Flame Structures and Conditional Statistics in Turbulent Spray Jet Combustion

난류분무제트연소에서의 화염구조와 조건평균 통계에 대한 수치적 연구

  • 서재엽 (포항공과대학교 기계공학과 대학원) ;
  • 허강열 (포항공과대학교 기계공학과)
  • Received : 2012.08.22
  • Accepted : 2012.09.19
  • Published : 2012.09.30

Abstract

3D DNS is performed for n-heptane spray turbulent jet combustion. Diesel-like conditions are considered including single and multiple injections. Conditional statistics are obtained for multiple Lagrangian flame groups of sequentially evaporating fuel. Each fuel group represents the conditional statistics of an independent Lagrangian flame group. Sequentially evaporating fuel goes through different histories and residence times over the ignition delay period. Multiple flame groups are required for accurate description of combustion of a spray jet that goes through a long injection duration or multiple injections.

Keywords

References

  1. A.R. Masri, J.D. Gounder, Springer Netherlands, 2011, 41-68.
  2. J. Reveillon, L. Vervsich, Combust. Flame 121, 2000, pp. 75-90. https://doi.org/10.1016/S0010-2180(99)00157-1
  3. Y. Wang, C.J. Rutland, Proc. Combust. Inst. 30, 2005, pp. 893-900. https://doi.org/10.1016/j.proci.2004.08.074
  4. Y. Wang, C.J. Rutland, Combust. Flame 149, 2007, pp. 353-365. https://doi.org/10.1016/j.combustflame.2007.03.005
  5. S. Sreedhara, K.Y. Huh, Proc. Combust. Inst. 31, 2007, pp. 2335-2342.
  6. E.E. O'Brien, T.-L. Jiang, Physics of Fluids A: Fluid Dynamics, 3, 1991, pp. 3121-3123. https://doi.org/10.1063/1.858127
  7. E. Mastorakos, T.A. Baritaud, T.J. Poinsot, Combust. Flame 109, 1997, pp. 198-223. https://doi.org/10.1016/S0010-2180(96)00149-6
  8. P. Schroll, A.P. Wandel, R.S. Cant, E. Mastorakos, Proc. Combust. Inst. 32, 2009, pp. 2275-2282. https://doi.org/10.1016/j.proci.2008.06.057
  9. J. Seo, K.Y. Huh, Proc. Combust. Inst. 33, 2011, pp. 2127-2134. https://doi.org/10.1016/j.proci.2010.06.060
  10. J. Seo, K.Y. Huh, Proc. Combust. Inst. http://dx.doi.org/10.1016/j.proci.2012.05.057.
  11. A.Y. Klimenko, R.W. Bilger, Prog. Energy Combust. Sci. 25, 1999, pp. 595-687. https://doi.org/10.1016/S0360-1285(99)00006-4
  12. J. Kwon, J. Seo, D. Lee, K.Y. Huh, SAE 2011 World Congress & Exhibition, 2011, pp. 964-975.
  13. I.S. Han, K.Y. Huh, Int. J. Automot. Tech. 6, 2005, pp. 571-577.
  14. Y.J. Lee, K.Y. Huh, Combust. Theory Model. 16, 2012, pp. 13-30. https://doi.org/10.1080/13647830.2011.608857
  15. J. Réveillon, Multiphase React. Flows: Model. Simul. 492, 2007, pp. 229-269.
  16. C.K. Westbrook, F.L. Dryer, Combust. Sci. Technol. 27 (1981, pp. 31-43. https://doi.org/10.1080/00102208108946970
  17. C.A. Kennedy, M.H. Carpenter, R.M. Lewis, Appl. Numer. Math. 35, 2000, pp. 177-219. https://doi.org/10.1016/S0168-9274(99)00141-5
  18. S.K. Lele, J. Comput. Phys. 103, 1992, pp. 16-42. https://doi.org/10.1016/0021-9991(92)90324-R
  19. C.S. Yoo, H.G. Im, Combust. Theory Model. 11, 2007, pp. 259-286. https://doi.org/10.1080/13647830600898995
  20. G. Lodato, P. Domingo, L. Vervisch, J. Comput. Phys. 227, 2008, pp. 5105-5143. https://doi.org/10.1016/j.jcp.2008.01.038