• Title/Summary/Keyword: Multiple injection

Search Result 408, Processing Time 0.025 seconds

Comparison of Combustion Characteristics with Combustion Strategy and Excess Air Ratio Change in a Lean-burn LPG Direct Injection Engine (직접분사식 LPG 엔진의 연소전략 및 공기과잉률 변화에 따른 연소특성 비교)

  • Cho, Seehyeon;Park, Cheolwoong;Oh, Seungmook;Yoon, Junkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.96-103
    • /
    • 2014
  • Liquefied Petroleum Gas(LPG) has attracted attention as a alternative fuel. The lean-burn LPG direct injection engine is a promising technology because it has an advantage of lower harmful emissions. This study aims to investigate the effect of combustion strategy and excess air ratio on combustion and emission characteristics in lean-burn LPG direct injection engine. Fuel consumption and combustion stability were measured with change of the ignition timing and injection timing at various air/fuel ratio conditions. The lean combustion characteristics were evaluated as a function of the excess air ratio with the single injection and multiple injection strategy. Furthermore, the feasibility of lean operation with stratified mixture was assessed when comparing the combustion and emission characteristics with premixed lean combustion.

A study on the prediction of optimized injection molding conditions and the feature selection using the Artificial Neural Network(ANN) (인공신경망을 통한 사출 성형조건의 최적화 예측 및 특성 선택에 관한 연구)

  • Yang, Dong-Cheol;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.50-57
    • /
    • 2022
  • The qualities of the products produced by injection molding are strongly influenced by the process variables of the injection molding machine set by the engineer. It is very difficult to predict the qualities of the injection molded product considering the stochastic nature of the manufacturing process, since the processing conditions have a complex impact on the quality of the injection molded product. It is recognized that the artificial neural network(ANN) is capable of mapping the intricate relationship between the input and output variables very accurately, therefore, many studies are being conducted to predict the relationship between the results of the product and the process variables using ANN. However in the condition of a small number of data sets, the predicting performance and robustness of the ANN model could be reduced due to too many input variables. In the present study, the ANN model that predicts the length of the injection molded product for multiple combinations of process variables was developed. And the accuracy of each ANN model was compared for 8 process variables and 4 important process inputs that were determined by the feature selection. Based on the comparison, it was verified that the performance of the ANN model increased when only 4 important variables were applied.

Global Optimization of Placement of Multiple Injection Wells with Simulated Annealing (담금질모사 기법을 이용한 인공함양정 최적 위치 결정)

  • Lee, Hyeonju;Koo, Min-Ho;Kim, Yongcheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.67-81
    • /
    • 2015
  • A FORTRAN program was developed to determine the optimal locations of multiple recharge wells in an aquifer with different arrangements of pumping wells. The simulated annealing algorithm was used to find optimal locations of two recharge wells which satisfied three objective functions. The model results show that locating two injection wells inside the cluster of pumping wells is efficient if the recovery rate only was taken into account. In contrast, placing injection wells to the side of the cluster is desirable if the simulation considers aggregate objective function. Therefore, installing an injection well on each side of the cluster seems to yield the maximum recovery rates for the existing pumping wells, and it yields similar increases in pumping rate for all wells in the cluster. The locations of recharge wells can be arranged in numerous configurations, because there are multiple near-optimal local minima or maxima. These results indicate that the simulated annealing can yield effective evaluations of the optimal locations of multiple recharge wells. In addition, the suggested aggregate objective function can be utilized as an appropriate multi-objective optimization.

A Study on the Direction of Research for Pharmacopuncture through the Analysis on the Current Status of Chinese Herbal Injections (중약주사제 실태현황 분석을 통한 국내 약침 연구 방향 모색)

  • Hwang, Ji Hye;Choi, Suhyeon;Song, Ho Sueb
    • Korean Journal of Acupuncture
    • /
    • v.38 no.4
    • /
    • pp.250-266
    • /
    • 2021
  • Objectives : This study was conducted to suggest new alternative methods to improve pharmacopuncture and Korean medicine research by analyzing the injection route, pharmacological effect, and status studies of Chinese herbal injections. Methods : 130 types of marketed and licensed Chinese herbal injection were searched from National Medical Products Administration (NMPA) of China. CNKI, PubMed, EMBASE, and the 2020 edition of the Chinese Pharmacopoeia were used to collect additional information. 'Herbal injection' and 'Chinese herbal injection' were used as keywords. All data were collected mainly on the treatment of Chinese herbal injection. But data which were not related to the relevant research or Chinese herbal injection were excluded. Results : Intramuscular injection accounted for more than half of the single injection route (51%). Acupoint and intramuscular injections accounted for 55% of dual injection routes. Acupoint, intravenous, and intramuscular injections accounted for the largest proportion (76%) of the multiple routes of injections. As for the pharmacological effect, injection for cardiovascular diseases accounted for 29%. About the number of raw herbal materials, single herbal material was the most common. Twelve intervention studies all tested intravenous injections, and half of them investigated cardiocerebrovascular diseases. All were given by intravenous injection. In the side effect section, the most common symptoms were nausea and vomiting. Conclusions : Through the results, it is expected to be used for research and development of new pharmacopuncture and herbal medicine.

Development and Reliability Verification of Quality Control System for Compaction Grouting Method (컴팩션 그라우팅 공법의 품질관리 시스템 개발 및 신뢰성 검증)

  • Seo, Seok-Hyun;Lee, Jung-Sang;Jung, Eui-Youp;Park, Sang-Yeong;Lee, Hyo-Bum
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.11-20
    • /
    • 2020
  • This study introduced the compact grouting method that can be used for improving soft ground and restoring buildings with unequal subsidence. The pump used in the traditional compact grouting method is a system that injects one hole each, which reduces the construction efficiency, and the analog injection method manually manages the construction by field workers, making it difficult to manage consistent quality. Pump and quality control system were developed to solve problems in existing construction. Since field supervisor determines amount of injected materials by using analog equipment and controls manually, it is difficult to manage consistent quality of construction. Therefore, the quality control system was developed in order to solve that problem. The quality control system consists of automatic mixing system of injection materials, multiple simultaneous injection pumps, and injection management monitoring system. Performance of the quality control system was verified through on-site testing, and ground improvement performance was verified through quality testing after testing and testing of the compact grouting method. Therefore, it is expected that the integrated quality control system developed will improve the quality assurance and efficiency and stability of construction at sites where construction and quality verification are difficult.

Design and Implementation of the Survival Game API Using Dependency Injection (의존성 주입을 활용한 서바이벌 게임 API 설계 및 구현)

  • InKyu Park;GyooSeok Choi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.183-188
    • /
    • 2023
  • Game object inheritance and multiple components allow for visualization of system architecture, good code reuse, and fast prototyping. On the other hand, objects are more likely to rely on high latency between game objects and components, static casts, and lots of references to things like null pointers. Therefore, It is important to design a game in such a way so that the dependency of objects on multiple classes could be reduced and existing codes could be reused. Therefore, we designed the game to make the classes more modular by applying Dependency Injection and the design patterns proposed by the Gang of Four. Since these dependencies are attributes of the game object and the injection occurs only in the initialization pass, there is little performance degradation or performance penalty in the game loop. Therefore, this paper proposed an efficient design method to effectively reuse APIs in the design and implementation of survival games.

Analysis of the Abnormal Voltage-Current Behaviors on Localized Carriers of InGaN/GaN Multiple Quantum well from Electron Blocking Layer

  • Nam, Giwoong;Kim, Byunggu;Park, Youngbin;Kim, Soaram;Kim, Jin Soo;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.219-219
    • /
    • 2013
  • The effect of an electron blocking layer (EBL) on V-I curves in GaN/InGaN multiple quantum well is investigated. For the first time, we found that curves were intersected at 3.012 V and analyzed the reason for intersection. The forward voltage in LEDs with an p-AlGaN EBL is larger than without p-AlGaN EBL at low injection current because the Mg doping efficiency for p-GaN layer was higher than that of p-AlGaN layer. However, the forward voltage in LEDs with an p-AlGaN EBL is smaller than without p-AlGaN EBL at high injection current because the carriers overflow from the active layer when injection current increases in LEDs without p-AlGaN EBL and in case of LED with p-AlGaN EBL, the carriers are blocked by EBL.

  • PDF

Development of intelligent model to predict the characteristics of biodiesel operated CI engine with hydrogen injection

  • Karrthik, R.S.;Baskaran, S.;Raghunath, M.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.367-379
    • /
    • 2019
  • Multiple Inputs and Multiple Outputs (MIMO) Fuzzy logic model is developed to predict the engine performance and emission characteristics of pongamia pinnata biodiesel with hydrogen injection. Engine performance and emission characteristics such as brake thermal efficiency (BTE), brake specific energy consumption (BSEC), hydrocarbon (HC), carbon monoxide (CO), carbon dioxide ($CO_2$) and nitrous oxides ($NO_X$) were considered. Experimental investigations were carried out by using four stroke single cylinder constant speed compression ignition engine with the rated power of 5.2 kW at variable load conditions. The performance and emission characteristics are measured using an Exhaust gas analyzer, smoke meter, piezoelectric pressure transducer and crank angle encoder for different fuel blends (Diesel, B10, B20 and B30) and engine load conditions. Fuzzy logic model uses triangular and trapezoidal membership function because of its higher predictive accuracy to predict the engine performance and emission characteristics. Computational results clearly demonstrate that, the proposed fuzzy model has produced fewer deviations and has exhibited higher predictive accuracy with acceptable determination correlation coefficients of 0.99136 to 1 with experimental values. The developed fuzzy logic model has produced good correlation between the fuzzy predicted and experimental values. So it is found to be useful for predicting the engine performance and emission characteristics with limited number of available data.

An Experimental Study on Multi-Injected Artificial Supercavitation (다중 분사 인공 초월공동에 대한 실험 연구)

  • Ahn, Byoung-Kwon;Kim, Ki-Seong;Jeong, So-Won;Yoon, Hyun-Gull
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • In this study, we present experimental observations of artificial supercavitation generated by the injection of compressed air at multiple locations on the body. Experiments were conducted at a cavitation tunnel equipped with a special facility to remove injected air before returning to the test section. Artificial supercavitation, which is generated at a relatively low speed compared to natural supercavitation, is formed asymmetrically on the axis of the body due to the buoyancy effect. In order to accelerate the development of the supercavity and increase the area covering the body, an experimental device capable of additional injection from the body was designed and its performance was evaluated through the model test. The shapes of the supercavity generated by multi-injections of different combinations according to different flow speeds were analyzed using high-speed shadow images. The results show that multiple injections at suitable locations can effectively increase the length of the supercavity and consequently improve propulsion efficiency.

Quasidimensional Simulation with Multi-zone Combustion Model for Homogeneous GDI Engine Emissions and Knocking (균일혼합기 가솔린 직분사 엔진의 다중 영역 유사차원 해석을 통한 배기 및 노킹 예측)

  • Lee, Jaeseo;Huh, Kang Y.;Kwon, Hyuckmo;Park, Jae In
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • A quasidimensional program is developed for a four stroke cycle homogeneous GDI (Gasoline Direct Injection) engine. It includes models for spray, burning rate and chemistry to predict knock and emissions. With early injection a homogeneous GDI engine goes through spark ignited, turbulent premixed combustion as in PFI (Port Fuel Injection) engines. The cylinder charge is divided into unburned and burned zone with the latter divided into multiple zones of equal mass to resolve temperature stratification. Validation is performed against measured pressure traces, NOx and CO emissions at different load and RPM conditions. Comparison is made between an empirical knock model and predictions by the chemistry model in this work.