• Title/Summary/Keyword: Multiple grain

Search Result 154, Processing Time 0.029 seconds

Parallel computation for transcendental structural eigenproblems

  • Kennedy, D.;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.635-644
    • /
    • 1997
  • The paper reviews the implementation and evaluation of exact methods for the computation of transcendental structural eigenvalues, i.e., critical buckling loads and natural frequencies of undamped vibration, on multiple instruction, multiple data parallel computers with distributed memory. Coarse, medium and fine grain parallel methods are described with illustrative examples. The methods are compared and combined into hybrid methods whose performance can be predicted from that of the component methods individually. An indication is given of how performance indicators can be presented in a generic form rather than being specific to one particular parallel computer. Current extensions to permit parallel optimum design of structures are outlined.

Design Space Exploration of Many-Core Architecture for Sound Synthesis of Guitar on Portable Device (휴대 장치용 기타 음 합성을 위한 매니코어 아키텍처의 디자인 공간 탐색)

  • Kang, Myeongsu;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.1-4
    • /
    • 2014
  • Although physical modeling synthesis is becoming more and more efficient in rich and natural high-quality sound synthesis, its high computational complexity limits its use in portable devices. This constraint motivated research of single-instruction multiple-data many-core architectures that support the tremendous amount of computations by exploiting massive parallelism inherent in physical modeling synthesis. Since no general consensus has been reached which grain sizes of many-core processors and memories provide the most efficient operation for sound synthesis, design space exploration is conducted for seven processing element (PE) configurations. To find an optimal PE configuration, each PE configuration is evaluated in terms of execution time, area and energy efficiencies. Experimental results show that all PE configurations are satisfied with the system requirements to be implemented in portable devices.

  • PDF

Effect of Heat Input of Outside Weld on Low Temperature Toughness of Inside Weld for Multiple Electrode SA Welded API 5L X70 with Sour Gas Resistance (내부식용 API 5L X70 다전극 SAW 용접부의 내면 저온인성에 미치는 외면 입열의 영향)

  • An, Hyun-Jun;Lee, Hee-Keun;Park, Young-Gyu;Eun, Seong-Su;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • This study aims to investigate the effect of heat input of outside SAW weld on low temperature toughness($-20^{\circ}C$) of inside SAW weld for API 5L X70 with sour gas resistance. As increasing heat input of the outside weld, low temperature toughness of the inside weld was decreased. Especially, in spite of the same heat input, the value of low temperature toughness was fluctuated. On the basis of fracture and microstructure analysis, the low temperature toughness is correlated with the fracture area ratio of shear lips and four kinds of fracture sections. These sections were divided with size and shape of dimple correlated with grain boundary ferrite and cleavage correlated acicular and polygonal ferrite in grain. Therefore, it was seen that these sections were two of final solidification area in the inside weld and the outside weld, no reheated zone and reheated zone in the inside weld. In conclusion, it is thought that the difference of low temperature toughness at the same heat input is due to the fact that each of impact test specimens could have the different microstructure, even though the notch was machined under the error tolerance of 1mm. It is because the final solidification area of the inside weld is very narrow.

Equilibrium Moisture Contents and Thin Layer Drying Equations of Cereal Grains and Mushrooms (I) - Thin Layer Drying Equations of Short Grain Rough Rice - (곡류 및 버섯류의 평형함수율 및 박층건조방정식에 관한 연구(I) -벼의 박층건조방정식 -)

  • 금동혁;박춘우
    • Journal of Biosystems Engineering
    • /
    • v.22 no.1
    • /
    • pp.11-20
    • /
    • 1997
  • Thin layer drying tests of short gain rough rice were conducted in an experimental dryer equiped with air conditioning unit. The drying tests were performed in triplicate at three air temperatures of $35^circ$, $45^circ$, $55^circ$, and three relative humidities of 40%, 55%, 70%, respectively. Previously published thin layer equations were reviewed and four different models widely used as thin layer drying equations for cereal grains were selected. The selected four models were Pages, simplified diffusion, Lewis's and Thompson's models. Experimental data were fitted to these equations using stepwise multiple regression analysis. The experimental constants involved in tow equations were represented as a function of temperature and relative humidity of drying air. The results of comparing coefficients of determination and root mean square errors of miosture ratio for low equations showed that Page's and Thompsons models were found to fit adequately to all drying test data with coefficient of determination of 0.99 or better and root mean square error of moisture ratio of 0.025.

  • PDF

Direct fabrication of a large grain YBCO bulk superconductor without intermediate grinding step

  • Hong, Yi-Seul;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.27-31
    • /
    • 2019
  • Large grain YBCO bulk superconductors are fabricated by the top-seeded melt growth (TSMG) or top-seeded infiltration growth (TSIG) method. Both growth methods use at least one of $YBa_2Cu_3O_{7-{\delta}}$, $Y_2BaCuO_5$, $BaCuO_3$ pre-reacted precursor powders. However, the synthesis of the pre-reacted powders includes multiple calcination runs which are cost-bearing and time-consuming. In this work, we report the successful growth of single-domain YBCO bulk superconductors directly by using the powder compact that has been pressed from the mixture of $Y_2O_3$, $BaCuO_3$ and CuO powders without any intermediate grinding step. Single-domain YBCO bulk superconductor has been also prepared by using $Y_2O_3$, $BaO_2$ and CuO powders without intermediate grinding step. Investigations on the trapped magnetic field and microstructure of the melt-processed specimen show that the elimination of the repeated processes of calcinations and pulverization has hardly affected on the crystal growth and the magnetic properties of the grown YBCO bulk superconductors. However, it is thought that the presence of residual carbon affects on the size of Y211 particles in melt-processed YBCO bulk superconductor.

Rapid Evaluation of Chemical Components of Rice Grain Using Near Infrared Spectroscopy (근적외분광분석법에 의한 미질관련 성분 측정)

  • 황흥구;조래광;손재근;이수관
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.1
    • /
    • pp.7-14
    • /
    • 1994
  • This study was conducted to establish the rapid evaluation method of chemical components of rice grain on the basis of non-destructive method. A near-infrared reflectance spectroscopic(NIRS) method was utilized, for the determination of amylose, protein, magnesium, and potassium content of rice. A multiple linear regression analysis for the data obtained by standard laboratory methods and NIRS method was carried out to make a calibration. The standard error of prediction for amylose, protein, magneisum and potassium content were 0.88%, 0.28%, 12.62mg and 10.79mg, respectively. It was concluded that the NlRS method can be useful the rapid determination of amylose, protein, magnesium and potassium content instead of the existing laboratory method.

  • PDF

Study on the Preferred Orientation Using White Neutron

  • Lee, Yun-Peel
    • Nuclear Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.219-230
    • /
    • 1974
  • The previous expression for the diffracted neutron intensity by a highly oriented polycrystalline is modified using the Kunitomi's formula of the crystal reflectivity The method of studying the preferred orientation in metals with white neutron is proposed utilizing the above formula and the fact that the real position of the diffraction of certain grain in the sample can be found by the comparison of the smaller angle part of the maxwellian curve of the calculated intensity of neutrons diffracted and the experimenal curves. The most probable wavelength of thermal neutrons from the reactor is found by the measurement of the neutron spectrum with the correction for the crystal about the multiple reflection and the absorption of neutrons and turned out to be 1.025 $\pm$ 0.001$\AA$. The preferred orientations of some electric steel sheets, mostly with the cube-on-face orientations, are investigated by the present method. The orientations of most grains relative to the rolling directions are found to be within 5 degrees. It is found the most of theories for large crystals may be extended to highly oriented polycrystalline materials without extensive modification.

  • PDF

Breeding Strategies to Increase Production Potential of Major Food Crops in Korea (식량생산능력 향상을 위한 농작물 육종전략)

  • Kim Gwang Ho;Kim Seok Dong;Park Mun Ung;Mun Heon Pal
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1999.11a
    • /
    • pp.80-101
    • /
    • 1999
  • Self-sufficiency ratio of food crops in Korea is estimated under $20{\%}$ in 2010 because total food consumption including feed will be increased. but food grain production will be decreased. It is necessary to maintain the optimum level of food self-sufficiency rate to secure national food demand/supply balance and non-trade and multiple function of agriculture in Korea. It will be possible to produce more food grains having the acceptable quality if the appropriate policy and cropping techniques are developed and practised in future. Breeding for high yielding varieties should be the first target to raise the production potential of food crops . Number of varieties developed during last 30 years is counted as 353 in food crops. New varieties developed in 1990s showed the higher yield potential and the improved agronomic characteristics compared with 1970s and 1980s varieties. But number of varieties planted on the farmer's field over $5{\%}$ of national planting area is less than one third of total varieties developed Breeding efforts to maintain planting area of main food crops should be focussed on consumer's demand and farmer's need. They are the best quality variety in each field of crop utilization, the newly designed variety adapting to changes of natural, rural and cropping environment, and the higher yielding variety. It is also needed to develop new quality crop varieties for inducing more consumption of crop grain produced in Korea for direct food or processing. Development of barley varieties for animal feed. high income soybean varieties, high quality wheat variety. and super yielding rice and barley varieties are also needed to keep or maximize national food production potential. In order to establish the appropriate cropping technique for domestic food security, the strong and continuous interest and financial support on crop breeding are required, and the inter-disciplinary and inter-institutionary researches should be strengthened for successful crop breeding.

  • PDF

Determining the Optimal Recipe for Long-Grain Jasmine Rice with Sea Tangle Laminaria japonica, and Its Effect on the Glycemic Index

  • Zeng, Jiting;Choi, Nam-Do;Ryu, Hong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.47-57
    • /
    • 2014
  • Thai Jasmine rice (Oryza sativa, long grain Indica var.) is popular in southeastern Asia and China due to its non-glutinous, fluffy texture and fragrant smell. However it has a high starch digestibility, which leads to an increased glycemic index (GI). Therefore it may require modified cooking methods for diabetes patients. The objectives of this study were to optimize the ratio of Thai Jasmine rice, sea tangle, and olive oil (CLTR) based on consumers' acceptance. The GI of plain cooked Thai Jasmine rice (CLR) was measured as a control. Sensory evaluation and response surface methodology were used to determine the optimal ratio. Texture analysis and nutritional evaluation were also performed on the optimal recipe of cooked Jasmine rice with sea tangle. A multiple regression equation was developed in quadratic canonical polynomial models. We used 26 trained Chinese panelists in their forties to rate color, flavor, adhesiveness, and glossiness, which we determined were highly correlated with overall acceptability. The optimal CLTR formula was 34.8% rice, 2.8% sea tangle, 61.9% water, and 0.5% olive oil. Compared to CLR, CLTR had a lower hardness, but a higher springiness and cohesiveness. However, CLR and CLTR had the same adhesiveness and chewiness. The addition of sea tangle and olive oil delayed retro-gradation of starch in CLTR and increased total dietary fiber, and protein and ash contents. The degree of gelatinization, and in vitro protein and starch digestibility of CLTR were lower than those of CLR. Based on Wolver' method, the GI of CLTR (52.9, incremental area under the glycemic-response curve, ignoring the area below fasting, as used for calculating the GI [Inc]) was lower compared with that of CLR (70.94, Inc), which indicates that CLTR is effective in decreasing and stabilizing blood glucose level, owing to its lower degree of gelatinization and starch digestibility. Our results show that CLTR can contribute to the development of a healthier meal for families and the fast food industry.

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF