• 제목/요약/키워드: Multiple crack

검색결과 228건 처리시간 0.025초

다중 균열 보강 판재에 관한 파괴 역학적 해석 (Fracture Mechanics Analysis of Multiple Load Path Plate)

  • 한문식;이양섭
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.109-115
    • /
    • 2001
  • The compliance approach to the problem of load sharing between a cracked plate and multiple plate used to bridge the crack. The theory is validated by using calculated stress intensity factors for the multiple load path plate to reduce experimentally observed growth rate to a common base. Calculations are them made on the effect of multiple load path plate width on fatigue crack retardation in order to demonstrate the predictive capability of the technique.

  • PDF

ON CRACK INTERACTION EFFECTS OF IN-PLANE SURFACE CRACKS USING ELASTIC AND ELASTIC-PLASTIC FINITE ELEMENT ANALYSES

  • Kim, Jong-Min;Huh, Nam-Su
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.680-689
    • /
    • 2010
  • The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components.

Multiple crack evaluation on concrete using a line laser thermography scanning system

  • Jang, Keunyoung;An, Yun-Kyu
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.201-207
    • /
    • 2018
  • This paper proposes a line laser thermography scanning (LLTS) system for multiple crack evaluation on a concrete structure, as the core technology for unmanned aerial vehicle-mounted crack inspection. The LLTS system consists of a line shape continuous-wave laser source, an infrared (IR) camera, a control computer and a scanning jig. The line laser generates thermal waves on a target concrete structure, and the IR camera simultaneously measures the corresponding thermal responses. By spatially scanning the LLTS system along a target concrete structure, multiple cracks even in a large scale concrete structure can be effectively visualized and evaluated. Since raw IR data obtained by scanning the LLTS system, however, includes timely- and spatially-varying IR images due to the limited field of view (FOV) of the LLTS system, a novel time-spatial-integrated (TSI) coordinate transform algorithm is developed for precise crack evaluation in a static condition. The proposed system has the following technical advantages: (1) the thermal wave propagation is effectively induced on a concrete structure with low thermal conductivity of approximately 0.8 W/m K; (2) the limited FOV issues can be solved by the TSI coordinate transform; and (3) multiple cracks are able to be visualized and evaluated by normalizing the responses based on phase mapping and spatial derivative processes. The proposed LLTS system is experimentally validated using a concrete specimen with various cracks. The experimental results reveal that the LLTS system successfully visualizes and evaluates multiple cracks without false alarms.

피로 하중하에서의 복수표면크랙진전에 관한 수치시뮬레이션 (Numerical Simulation of Fatigue Growth of Multiple Surface Crack under Fatigue Load)

  • 한문식
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.133-141
    • /
    • 2002
  • This paper describes a versatile finite element technique which has been used to investigate wide range of structural defects of practical importance. The procedure automatically remeshes the three-dimensional finite element model during the stages of crack growth. Problems include the surface cracks in leak-before-break situations, the shape development of multiple surface defects.

Mk-계수를 고려한 용접부 복수 표면균열 진전수명 평가 (Fatigue Life Estimation of Welded Joints by using Mk-factor under a Propagation Mechanism of Multiple Collinear Surface Cracks)

  • 한승호;한정우;신병천;김재훈
    • Journal of Welding and Joining
    • /
    • 제22권4호
    • /
    • pp.73-81
    • /
    • 2004
  • Failure mechanisms of welded joints under fatigue loads are interpreted that multiple collinear surface cracks initiating randomly along the weld toes propagate under the mutual interaction and coalescence of adjacent two cracks. To estimate fatigue crack propagation life for three types of the representative welded joints, i.e. non-load carrying cruciform, cover plate and longitudinal stiffener joint, the stress intensity factors at the front of the surface cracks have to be calculated, which are influenced strongly by the geometry of attachments, weld toes and the crack shapes. For the effective calculation of the stress intensity factors the Mk-factor was introduced which can be derived by a parametric study performed by FEM considering influence of the geometrical effects. The fatigue life of the cruciform joint was estimated by using the Mk-factors and the method considering the propagation mechanisms of the multiple surface cracks. Analysis results for the fatigue life had a good agreement with that of experiment.

Multiple cracking analysis of HTPP-ECC by digital image correlation method

  • Felekoglu, Burak;Keskinates, Muhammer
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.831-848
    • /
    • 2016
  • This study aims to characterize the multiple cracking behavior of HTPP-ECC (High tenacity polypropylene fiber reinforced engineered cementitious composites) by Digital Image Correlation (DIC) Method. Digital images have been captured from a dogbone shaped HTPP-ECC specimen exhibiting 3.1% tensile ductility under loading. Images analyzed by VIC-2D software and ${\varepsilon}_{xx}$ strain maps have been obtained. Crack widths were computed from the ${\varepsilon}_{xx}$ strain maps and crack width distributions were determined throughout the specimen. The strain values from real LVDTs were also compared with virtual LVDTs digitally attached on digital images. Results confirmed that it is possible to accurately monitor the initiation and propagation of any single crack or multiple cracks by DIC at the whole interval of testing. Although the analysis require some post-processing operations, DIC based crack analysis methodology can be used as a promising and versatile tool for quality control of HTPP-ECC and other strain hardening composites.

동일평면상에 존재하는 복수표면균열의 피로성장수명예측 (Fatigue Growth Life Prediction for Collinear Multiple Surface Cracks)

  • 이진호;최용식;김영진
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1668-1677
    • /
    • 1993
  • The objective of this paper is to develop a computational model for predicting the fatigue propagation of collinear multiple surface cracks under constant amplitude and variable amplitude loadings. After examining fatigue crack growth behavior for CT specimens and single surface crack specimens, empirical equations of(11) and(12) are proposed for the prediction of fatigue life in a multiple surface crack geometry. The accuracy of the proposed model is verified using a life prediction computer program. Several case studies were performed to check the accuracy of the proposed model and to verify the usefulness of the developed program. Good agreement is observed between the numerical results based on the proposed model and the published experimental data.

다중 균열을 갖는 신장 보의 균열 에너지와 지배방정식 (Crack Energy and Governing Equation of an Extensible Beam with Multiple Cracks)

  • 손수덕
    • 한국공간구조학회논문집
    • /
    • 제24권1호
    • /
    • pp.65-72
    • /
    • 2024
  • This paper aims to advance our understanding of extensible beams with multiple cracks by presenting a crack energy and motion equation, and mathematically justifying the energy functions of axial and bending deformations caused by cracks. Utilizing an extended form of Hamilton's principle, we derive a normalized governing equation for the motion of the extensible beam, taking into account crack energy. To achieve a closed-form solution of the beam equation, we employ a simple approach that incorporates the crack's patching condition into the eigenvalue problem associated with the linear part of the governing equation. This methodology not only yields a valuable eigenmode function but also significantly enhances our understanding of the dynamics of cracked extensible beams. Furthermore, we derive a governing equation that is an ordinary differential equation concerning time, based on orthogonal eigenmodes. This research lays the foundation for further studies, including experimental validations, applications, and the study of damage estimation and detection in the presence of cracks.

Time domain identification of multiple cracks in a beam

  • He, Z.Y.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • 제35권6호
    • /
    • pp.773-789
    • /
    • 2010
  • It is well known that the analytical vibration characteristic of a cracked beam depends largely on the crack model. In the forward analysis, an improved and simplified approach in modeling discrete open cracks in beams is presented. The effective length of the crack zone on both sides of a crack with stiffness reduction is formulated in terms of the crack depth. Both free and forced vibrations of cracked beams are studied in this paper and the results from the proposed modified crack model and other existing models are compared. The modified crack model gives very accurate predictions in the modal frequencies and time responses of the beams particularly with overlaps in the effective lengths with reduced stiffness. In the inverse analysis, the response sensitivity with respect to damage parameters (the location and depth of crack, etc.) is derived. And the dynamic response sensitivity is used to update the damage parameters. The identified results from both numerical simulations and experiment work illustrate the effectiveness of the proposed method.

비드형상 및 복수 표면균열의 확률적 특성을 고려한 필릿 용접부 피로수명 평가 (Fatigue Life Estimation of Fillet Welded Joints Considering Statistical Characteristics of Weld Toe's Shape and Multiple Collinear Surface Cracks)

  • 한승호;한정우
    • Journal of Welding and Joining
    • /
    • 제23권3호
    • /
    • pp.68-75
    • /
    • 2005
  • The fatigue life of welded joints is associated with crack initiation and propagation life. Theses cannot be easily separated, since the definition of crack initiation is vague due to the initiation of multiple cracks that are distributed randomly along the weld toes. In this paper a method involving a notch strain and fracture mechanical approach, which considers the characteristics of welded joints, e.g. welding residual stress and statistical characteristics of multiple cracks, is proposed, in an attempt to reasonably estimate these fatigue lives. The fatigue crack initiation life was evaluated statistically, e.g. the probability of failure occurrence in 2.3, 50 and $97.7\%$, in which the cyclic response of the local stress/strain hi the vicinity of the weld toes and notch factors derived by the irregular shape of the weld bead are taken into account. The fatigue crack propagation life was simulated by using Monte-Carlo method in consideration of the Ad-factor and the mechanical behavior of mutual interaction/coalescence between two adjacent cracks. The estimated total fatigue life, $(N_T)_{P50\%}$, as a sum of crack initiation and propagation life under the probability of failure occurrence in $50\%$ showed a good agreement with the experimental results. The developed technique for fatigue lift estimation enables to provide a quantitative proportion of crack initiation and propagation life in the total fatigue life due to the nominal stress range, ${\Delta}S$.