• Title/Summary/Keyword: Multiple clustering

Search Result 358, Processing Time 0.023 seconds

Clustering Patterns and Correlates of Multiple Health Behaviors in Middle-aged Koreans with Metabolic Syndrome

  • Jeon, Janet Ye-Won;Yoo, Seung-Hyun;Kim, Hye-Kyeong
    • Korean Journal of Health Education and Promotion
    • /
    • v.29 no.2
    • /
    • pp.93-105
    • /
    • 2012
  • Objectives: The objective of the study was to examine the clustering patterns and correlates of multiple health behaviors (MHBs) in middle-aged Koreans with metabolic syndrome (MetS). Methods: Data on sociodemographics, clinical characteristics, health behaviors (vegetable intake, physical activity, cigarette smoking, and alcohol consumption), and psychological characteristics were collected by a self-reported survey and medical examination from 331 individuals with MetS. Clustering of MHBs was examined by measuring 1) the ratios of observed and expected prevalence of MHBs, and 2) the prevalence odds ratios. A binomial logistic regression were conducted. Results: Men were more likely than women to engage in multiple unhealthy behaviors. Clustering of smoking and heavy drinking was exhibited in the participants. Women with high vegetable intake were more likely to be physically inactive, and those with inadequate vegetable intake were more likely to be physically active. Those with lower self-regulation were more likely to engage in unhealthy behaviors. Conclusions: The findings support the multiple health behavior approach as opposed to the individual health behavior approach. Emphasis of self-regulation is necessary in developing multiple behavior intervention for individuals with MetS.

A Multiple Sequence Alignment Algorithm using Clustering Divergence (콜러스터링 분기를 이용한 다중 서열 정렬 알고리즘)

  • Lee Byung-ll;Lee Jong-Yun;Jung Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.1-10
    • /
    • 2005
  • Multiple sequence alignment(MSA) is a fundamental technique of DNA and Protein sequence analysis. Biological sequences are aligned vertically in order to show the similarities and differences among them. In this Paper, we Propose an effcient group alignment method, which is based on clustering divergency, to Perform the alignment between two groups of sequences. The Proposed algorithm is a clustering divergence(CDMS)-based multiple sequence alignment and a top-down approach. The algorithm builds the tree topology for merging. It is so based on the concept that two sequences having the longest distance should be spilt into two clusters. We expect that our sequence alignment algorithm improves its qualify and speeds up better than traditional algorithm Clustal-W.

  • PDF

Gated Multi-channel Network Embedding for Large-scale Mobile App Clustering

  • Yeo-Chan Yoon;Soo Kyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1620-1634
    • /
    • 2023
  • This paper studies the task of embedding nodes with multiple graphs representing multiple information channels, which is useful in a large volume of network clustering tasks. By learning a node using multiple graphs, various characteristics of the node can be represented and embedded stably. Existing studies using multi-channel networks have been conducted by integrating heterogeneous graphs or limiting common nodes appearing in multiple graphs to have similar embeddings. Although these methods effectively represent nodes, it also has limitations by assuming that all networks provide the same amount of information. This paper proposes a method to overcome these limitations; The proposed method gives different weights according to the source graph when embedding nodes; the characteristics of the graph with more important information can be reflected more in the node. To this end, a novel method incorporating a multi-channel gate layer is proposed to weigh more important channels and ignore unnecessary data to embed a node with multiple graphs. Empirical experiments demonstrate the effectiveness of the proposed multi-channel-based embedding methods.

Clustering of Decision Making Units using DEA (DEA를 이용한 의사결정단위의 클러스터링)

  • Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.239-244
    • /
    • 2014
  • The conventional clustering approaches are mostly based on minimizing total dissimilarity of input and output. However, the clustering approach may not be helpful in some cases of clustering decision making units (DMUs) with production feature converting multiple inputs into multiple outputs because it does not care converting functions. Data envelopment analysis (DEA) has been widely applied for efficiency estimation of such DMUs since it has non-parametric characteristics. We propose a new clustering method to identify groups of DMUs that are similar in terms of their input-output profiles. A real world example is given to explain the use and effectiveness of the proposed method. And we calculate similarity value between its result and the result of a conventional clustering method applied to the example. After the efficiency value was added to input of K-means algorithm, we calculate new similarity value and compare it with the previous one.

Multiple Peak Detection Using the Extended Fuzzy Clustering (확장된 퍼지 클러스터링 알고리즘을 이용한 다중 첨두 검출)

  • 김수환;조창호;강경진;이태원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.102-112
    • /
    • 1992
  • We have already proposed an extended fuzzy clustering algorithm which considers the importance of the data to be classified in a previous paper. In this paper, we suggest the extended fuzzy clustering algorithm based new method to slove a multiple peak detection problem, and prove experimently that this algorithm can detect the multiple peak adaptively to the noise and the shape of peaks.

  • PDF

Gene Sequences Clustering for the Prediction of Functional Domain (기능 도메인 예측을 위한 유전자 서열 클러스터링)

  • Han Sang-Il;Lee Sung-Gun;Hou Bo-Kyeng;Byun Yoon-Sup;Hwang Kyu-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1044-1049
    • /
    • 2006
  • Multiple sequence alignment is a method to compare two or more DNA or protein sequences. Most of multiple sequence alignment tools rely on pairwise alignment and Smith-Waterman algorithm to generate an alignment hierarchy. Therefore, in the existing multiple alignment method as the number of sequences increases, the runtime increases exponentially. In order to remedy this problem, we adopted a parallel processing suffix tree algorithm that is able to search for common subsequences at one time without pairwise alignment. Also, the cross-matching subsequences triggering inexact-matching among the searched common subsequences might be produced. So, the cross-matching masking process was suggested in this paper. To identify the function of the clusters generated by suffix tree clustering, BLAST and CDD (Conserved Domain Database)search were combined with a clustering tool. Our clustering and annotating tool consists of constructing suffix tree, overlapping common subsequences, clustering gene sequences and annotating gene clusters by BLAST and CDD search. The system was successfully evaluated with 36 gene sequences in the pentose phosphate pathway, clustering 10 clusters, finding out representative common subsequences, and finally identifying functional domains by searching CDD database.

Multiple Person Tracking based on Spatial-temporal Information by Global Graph Clustering

  • Su, Yu-ting;Zhu, Xiao-rong;Nie, Wei-Zhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2217-2229
    • /
    • 2015
  • Since the variations of illumination, the irregular changes of human shapes, and the partial occlusions, multiple person tracking is a challenging work in computer vision. In this paper, we propose a graph clustering method based on spatio-temporal information of moving objects for multiple person tracking. First, the part-based model is utilized to localize individual foreground regions in each frame. Then, we heuristically leverage the spatio-temporal constraints to generate a set of reliable tracklets. Finally, the graph shift method is applied to handle tracklet association problem and consequently generate the completed trajectory for individual object. The extensive comparison experiments demonstrate the superiority of the proposed method.

Reinterpretation of Multiple Correspondence Analysis using the K-Means Clustering Analysis

  • Choi, Yong-Seok;Hyun, Gee Hong;Kim, Kyung Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.505-514
    • /
    • 2002
  • Multiple correspondence analysis graphically shows the correspondent relationship among categories in multi-way contingency tables. It is well known that the proportions of the principal inertias as part of the total inertia is low in multiple correspondence analysis. Moreover, although this problem can be overcome by using the Benzecri formula, it is not enough to show clear correspondent relationship among categories (Greenacre and Blasius, 1994, Chapter 10). In addition, they show that Andrews' plot is useful in providing the correspondent relationship among categories. However, this method also does not give some concise interpretation among categories when the number of categories is large. Therefore, in this study, we will easily interpret the multiple correspondence analysis by applying the K-means clustering analysis.

Cluster Analysis with Balancing Weight on Mixed-type Data

  • Chae, Seong-San;Kim, Jong-Min;Yang, Wan-Youn
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.719-732
    • /
    • 2006
  • A set of clustering algorithms with proper weight on the formulation of distance which extend to mixed numeric and multiple binary values is presented. A simple matching and Jaccard coefficients are used to measure similarity between objects for multiple binary attributes. Similarities are converted to dissimilarities between i th and j th objects. The performance of clustering algorithms with balancing weight on different similarity measures is demonstrated. Our experiments show that clustering algorithms with application of proper weight give competitive recovery level when a set of data with mixed numeric and multiple binary attributes is clustered.

Mitigating the ICA Attack against Rotation-Based Transformation for Privacy Preserving Clustering

  • Mohaisen, Abedelaziz;Hong, Do-Won
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.868-870
    • /
    • 2008
  • The rotation-based transformation (RBT) for privacy preserving data mining is vulnerable to the independent component analysis (ICA) attack. This paper introduces a modified multiple-rotation-based transformation technique for special mining applications, mitigating the ICA attack while maintaining the advantages of the RBT.

  • PDF