• Title/Summary/Keyword: Multiple cells

Search Result 1,538, Processing Time 0.028 seconds

Endogenous Stem Cells in the Ear (귀에 존재하는 내인성 성체줄기세포)

  • Park, Kyoung Ho
    • Korean Journal of Otorhinolaryngology-Head and Neck Surgery
    • /
    • v.56 no.12
    • /
    • pp.749-753
    • /
    • 2013
  • Basically stem cells have characteristics of multi-potency, differentiation into multiple tissue types, and self-renew through proliferation. Recent advances in stem cell biology can make identifying the stem-cell like cells in various mammalian tissues. Stem cells in various tissues can restore damaged tissue. Stem cells from the adult nervous system proliferate to form clonal floating colonies called spheres in vitro, and recent studies have demonstrated sphere formation by cells in the tympanic membrane, vestibular system, spiral ganglion, and partly in the organ of Corti. The presence of stem cells in the ear raises the possibilities for the regeneration of the tympanic membrane & inner ear hair cells & neurons. But the gradual loss of stem cells postnatally in the organ of Corti may correlate with the loss of regenerative capacity and limited hearing restoration. Future strategies using endogenous stem cells in the ear can be the another treatment modality for the patients with intractable inner ear diseases.

Regulation of Th2 Cell Immunity by Dendritic Cells

  • Hyeongjin Na;Minkyoung Cho;Yeonseok Chung
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • Th2 cell immunity is required for host defense against helminths, but it is detrimental in allergic diseases in humans. Unlike Th1 cell and Th17 cell subsets, the mechanism by which dendritic cells modulate Th2 cell responses has been obscure, in part because of the inability of dendritic cells to provide IL-4, which is indispensable for Th2 cell lineage commitment. In this regard, immune cells other than dendritic cells, such as basophils and innate lymphoid cells, have been suggested as Th2 cell inducers. More recently, multiple independent researchers have shown that specialized subsets of dendritic cells mediate Th2 cell responses. This review will discuss the current understanding related to the regulation of Th2 cell responses by dendritic cells and other immune cells.

A New Mathematical Model for Optimum Production of Neural Stem Cells in Large-scale

  • Hossain, S.M. Zakir;Sultana, Nahid;Babar, S.M. Enayetul;Haki, G.D.
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.77-84
    • /
    • 2007
  • Millions of individuals worldwide are currently afflicted with neurodegenerative disorders such as Parkinson's disease and multiple sclerosis which are caused by the death of specific types of specialized cells in the Central Nervous System (CNS). Recently, Neural Stem Cells (NSCs) are able to replace these dead cells with new functional cells, thereby providing a cure for devastating neural diseases. The clinical use of neural stem cells (NSCs) for the treatment of neurological diseases requires overcoming the scarcity of the initial in vivo NSC population. Thus, we developed a novel 3-dimentional cellular automata model for optimum production of neural stem cells and their derivatives in large scale to treat neurodegenerative disorder patients.

Beyond the mouth: Uncovering non-secretory multiple myeloma through oral symptoms

  • Pedro Henrique Chaves Isaias;Fabio Wildson Gurgel Costa;Pedro Henrique Goncalves Holanda Amorim;Raul Anderson Domingues Alves da Silva;Fabrício Bitu Sousa;Karuza Maria Alves Pereira;Ana Paula Negreiros Nunes Alves;Mario Rogério Lima Mota
    • Imaging Science in Dentistry
    • /
    • v.54 no.2
    • /
    • pp.211-220
    • /
    • 2024
  • Non-secretory multiple myeloma (NSMM) is a rare cancer of plasma cells characterized by the absence of detectable monoclonal M protein in the blood or urine. A 57-year-old woman presented with mandibular pain but without intraoral swelling. Imaging studies revealed multiple osteolytic lesions in her mandible and pronounced root resorption of the left mandibular second molar. Biopsy results showed atypical plasmacytoid cells positive for anti-kappa, CD138, MUM1, and CD79a antibodies, but negative for anti-lambda and CD20. These results were indicative of a malignant plasma cell neoplasm. No abnormalities were revealed by free light chain assay or by serum or urine protein electrophoresis, leading to a diagnosis of NSMM. The patient began chemotherapy in conjunction with bisphosphonate therapy and achieved remission following treatment. This case underscores the critical role of dentists in the early detection and prevention of NSMM complications, as the disease can initially present in the oral cavity.

In vitro Anti-tumor Effect of an Engineered Vaccinia Virus in Multiple Cancer Cells and ABCG2 Expressing Drug Resistant Cancer Cells (재조합 백시니아 바이러스의 다양한 암세포 및 ABCG2 과발현 내성 암세포에 대한 항 종양 효과 연구)

  • Park, Ji Hye;Yun, Jisoo;Heo, Jeong;Hwang, Tae Ho;Kwon, Sang Mo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.835-846
    • /
    • 2016
  • Chemo-resistance is the biggest issue of effective cancer therapy. ABCG2 is highly correlated with multi-drug resistance, and represent a typical phenotype of multiple cancer stem-like cells. Accumulating evidence recently reported that oncolytic viruses represent a new strategy for multiple aggressive cancers and drug resistant cancers including cancer stem cell-like cells and ABCG2 expressing cells. In this study, we generated an evolutionally engineered vaccinia virus, SLJ-496, for drug-resistant cancer therapy. We first showed that SLJ-496 treatment enhanced tumor affinity using cytopathic effect assay, plaque assay, as well as cell viability assay. Next, we clearly demonstrated that in vitro SLJ-496 treatment represents significant cytotoxic effect in multiple cancers including colorectal cancer cells (HT-29, HCT-116, HCT-8), gastric cancer cells (AGS, NCI-N87, MKN-28), Hepatocellular carcinoma cells (SNU-449, SNU-423, SNU-475, HepG2), as well as mesothelioma cell (NCI-H226, NCI-H28, MSTO-221h). Highly ABCG2 expressing HT-29 cells represent cancer stem like phenotype including stem cell marker expression, and self-renewal bioactivities. Interestingly, we demonstrated that in vitro treatment of SLJ-496 showed significant cytotoxicity effect, as well as viral replication capacity in ABCG2 overexpressing cell. In addition, we also demonstrated the cytotoxic effect of SLJ-496 in Adriamycin-resistant cell lines, SNU-620 and ADR-300. Taken together, these findings provide us a pivotal clue that cancer therapy using SLJ-496 vaccinia virus might be new therapeutic strategy to overcome ABCG2 expressing cancer stem-like cell and multiple chemo-resistance cancer cells.

Independent Regulation of Endothelial Nitric Oxide Synthase by Src and Protein Kinase A in Mouse Aorta Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • Endothelial nitric oxide synthase (eNOS) plays a critical role in vascular biology and pathophysiology. Its activity is regulated by multiple mechanisms such as calcium/calmodulin, protein-protein interactions, sub-cellular locations and phosphorylation at various sites. Phosphorylation of eNOS-Ser1177 (based on mouse sequence) has been identified as an important mechanism of eNOS activation. However, signaling pathway leading to it phosphorylation remains controversial. The regulation of eNOS-Ser1177 phosphorylation by Src and protein kinase A (PKA) was investigated in the present study using cultured mouse aorta endothelial cells. Expression of a constitutively active Src mutant in the cells enhanced phosphorylation of eNOS and protein kinase B (Akt). The Src-stimulated phosphorylation was not attenuated by the expression of a dominant negative PKA regulatory subunit. Neither activation nor inhibition of PKA activity had any significant effect on tyrosine phosphorylation of activation or inactivation site in Src. Based on the results of this study, it is suggested that Src/Akt pathway and PKA signaling may regulate eNOS phosphorylation independently. The existence of multiple mechanisms for eNOS phosphorylation may guarantee endothelial nitric oxide production in various cellular contexts which is essential for maintenance of vascular health.

Increasing Flight Endurance of MAVs using Multiple Quantum Well Solar Cells

  • Hassanalian, Mostafa;Radmanesh, Mohammadreza;Sedaghat, Ahmad
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.212-217
    • /
    • 2014
  • Micro Aerial Vehicles (MAVs) are useful devices to assess new features that may be utilized in a full size aircraft to enhance performance or to increase endurance. In this article, sources for energy saving in the micro air vehicles are initially addressed. Then, by specifying the important parameters on energy consumption of an aircraft, a feasibility study is conducted to assess the benefit of using solar cells to increase flight endurance. Next, a new solar cell has been designed and optimized for MAVs. This cell consists of a multiple quantum wells for which the quantum factor and the absorption coefficient are calculated by solving the Shrodinger equation using MATLAB software. Then, the manner and influence of MAVs parameters using the solar cells are examined to suggest optimal planform for different purposes. In order to increase flight endurance, it is noted that by using appropriate planform and the optimized solar cells, flight endurance can be increased by more than 30 percent.

Studies on the Development of a Microbial Cryoprotectant Formulation Using a W/O/W Multiple Emulsion System

  • Bae, Eun-Kyung;Cho, Young-Hee;Park, Ji-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.673-679
    • /
    • 2004
  • A microbial cryoprotectant formulation using a W/O/W multiple emulsion system was developed. The psychrotolerant microorganism, B4, isolated from soil in South Korea, was observed by the drop freezing method, in which the microorganism sample inhibited ice nucleation activity. The antifreeze activity was eliminated when the microorganism sample was treated with protease, indicating that the antifreeze activity was due to the presence of antifreeze protein. The result of the l6S rDNA sequencing indicated the B4 strain was most closely related to a species of the genus Bacillus. Culture broth of B4 strain (Bacillus sp.) and rapeseed oil containing 1 % polyglycerine polyricinolate (PGPR) were used as core and wall material, respectively. The most stable W/O emulsion was prepared at a core/oil ratio of 1:2. The highest W/O/W emulsion stability was achieved when the primary emulsion to external aqueous phase containing 0.5% caster oil polyoxyethylene ether $(COG25^{TM})$ ratio was 1:1. Microcrystalline cellulose showed better W/O/W emulsion stability than other polymer types. The viability of cells in a W/O/W emulsion was higher than free cells during storage at $37^\circ{C}$. An acidic pH and UV exposure decreased the viability of free cells, but cells in W/O/W emulsion were more stable under these conditions.