A New Mathematical Model for Optimum Production of Neural Stem Cells in Large-scale

  • Published : 2007.06.30

Abstract

Millions of individuals worldwide are currently afflicted with neurodegenerative disorders such as Parkinson's disease and multiple sclerosis which are caused by the death of specific types of specialized cells in the Central Nervous System (CNS). Recently, Neural Stem Cells (NSCs) are able to replace these dead cells with new functional cells, thereby providing a cure for devastating neural diseases. The clinical use of neural stem cells (NSCs) for the treatment of neurological diseases requires overcoming the scarcity of the initial in vivo NSC population. Thus, we developed a novel 3-dimentional cellular automata model for optimum production of neural stem cells and their derivatives in large scale to treat neurodegenerative disorder patients.

Keywords

References

  1. Bailey, J. E. & Ollis, D. F. Biochemical engineering fundamentals. Second Edition, McGraw-Hill Company, Toronto (1986)
  2. Berna, G., Leon, Q. T. & Martin, F. Stem cells and diabetes. Biomed. Pharmacother. 113:206-212 (2001)
  3. Blyszczuk, P. & Wobus, A. M. Stem cells and pancreatic differentiation in vitro. J. of Biotechnology 113:3-13 (2004) https://doi.org/10.1016/j.jbiotec.2004.03.023
  4. Boucher, K., Yakovlev, A.Y., Mayer, P. M. & Noble, M. A stochastic model of temporally regulated generation of oligodendrocytes in cell culture. Math. Biosci. 159:47-78 (1999) https://doi.org/10.1016/S0025-5564(99)00010-3
  5. Boucher, K. et al. An alternative stochastic model of generation of oligodendrocytes in cell culture. J. Math. Biol. 43:22-36 (2001) https://doi.org/10.1007/s002850100085
  6. Cabrera, M. E., Saidel, G. M. & Kalhan, S.C. Role of $O_{2}$ in regulation of lactate dynamics during hypoxia: mathematical model and analysis. Ann. Biomed. Eng. 26:1-27 (1998) https://doi.org/10.1114/1.28
  7. Curry, J. L. & Trentin, J. J. Hemopoietic spleen colony studies. I. Growth and differentiation. Dev. Biol. 15:395-413 (1967) https://doi.org/10.1016/0012-1606(67)90034-6
  8. Deasy, B. M. et al. Modeling stem cell population growth: incorporating terms for proliferative heterogeneity. Stem Cells 21(5):536-545 (2003) https://doi.org/10.1634/stemcells.21-5-536
  9. Gilbertson, J. A., Sen, A., Behie, L. A. & Kallos, M. S. Scaled-up production of mammalian neural precursor cell aggregates in computer-controlled suspension bioreactors. Biotechnology and Bioengineering 94(4):783-792 (2006) https://doi.org/10.1002/bit.20900
  10. Metcalf, D. & Nicola, N. A. The regulatory factors controlling murine erythropoiesis in vitro. Prog. Clin. Biol. Res. 148:93-105 (1984)
  11. Reynolds, B. A. & Weiss, S. Generation of neurons and sstroctyes from isolated cells of the adult mammalian central nervous system. Science 255:1707-1710 (1992) https://doi.org/10.1126/science.1553558
  12. Reynolds, B. A. & Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Developmental Biology 175:1-13 (1996) https://doi.org/10.1006/dbio.1996.0090
  13. Sadiq, T. S. & Gerber, D. A. Stem cells in modern medicine: reality or myth? Journal of Surgical Research 122:280-291 (2004) https://doi.org/10.1016/j.jss.2004.04.025
  14. Sen, A. & Behie, L. A. The development of a medium for the in vitro expansion of mammalian neural stem cells. Canadian Journal of Chemical Engineering 77(5):963-972 (1999) https://doi.org/10.1002/cjce.5450770525
  15. Sen, A., Kallos, M. S. & Behie, L. A. Effect of hydrodynamics on cultures of mammalian neural stem cells aggregates in suspension bioreactors. Industrial and Engineering Chemistry Research 40: 5350-5357 (2001) https://doi.org/10.1021/ie001107y
  16. Sen, A., Kallos, M. S. & Behie, L. A. Passaging protocols for mammalian neural stem cells in suspension bioreactors. Biotechnology Progress 18(2):337-345 (2002a) https://doi.org/10.1021/bp010150t
  17. Sen, A., Kallos, M. S. & Behie, L. A. Expansion of mammalian neural stem cells in bioreactors: Effect of power input and medium viscosity. Developmental Brain Research 134(1-2):103-113 (2002b) https://doi.org/10.1016/S0165-3806(01)00224-3
  18. Sen, A., Kallos, M. S. & Behie, L. A. New tissue dissociation protocol for scaled-Up production of neural stem cells in suspension bioreactors. Tissue Engineering 10:904-913 (2004) https://doi.org/10.1089/1076327041348554
  19. Viswanathan, S. & Zandstra, P. W. Towards predictive models of stem cell fate. Cytotechnology 41:75- 92 (2003) https://doi.org/10.1023/A:1024866504538
  20. Wang, T. Y., Sen, A., Behie, L. A. & Kallos, M. S. Dynamic behaviour of neurospheres in expanding populations of neural precursors. Brain Research 1107:82-96 (2006) https://doi.org/10.1016/j.brainres.2006.05.110
  21. Yakovlev, A. Y., Mayer, P. M. & Noble, M. A stochastic model of brain cell differentiation in tissue culture. J. Math. Biol. 37:49-60 (1998) https://doi.org/10.1007/s002850050119
  22. Zhang, X. W., Audet, J., Piret, J. M. & Li, Y. X. Cell cycle distribution of primitive haematopoietic cells stimulated in vitro and in vivo. Cell. Prolif. 34:321- 330 (2001) https://doi.org/10.1046/j.0960-7722.2001.00210.x
  23. Zorin, A., Mayer, P. M., Noble, M. & Yakovlev, A. Y. Estimation problems associated with stochastic modeling of proliferation and differentiation of O-2A progenitor cells in vitro. Math. Biosci. 167:109-121 (2000) https://doi.org/10.1016/S0025-5564(00)00040-7