• Title/Summary/Keyword: Multiple cells

Search Result 1,538, Processing Time 0.031 seconds

Nuclear Akt promotes neurite outgrowth in the early stage of neuritogenesis

  • Park, Ji-Hye;Lee, Sang-Bae;Lee, Kyung-Hoon;Ahn, Jee-Yin
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.521-525
    • /
    • 2012
  • In addition to its pivotal role in neuronal survival, PI3K/Akt signaling is integral to neuronal differentiation and neurite outgrowth. However, the exact role of Akt in neuronal differentiation is still controversial. Here, we found that nuclear expression of CA-Akt resulted in unusual rapid neurite outgrowth and overexpression of KD-Akt caused multiple dendrite growth without specific axon elongation. Moreover, microarray data revealed that the expression of FOXQ1 expression was about 10-fold higher in cells with nuclear, active Akt than in control cells. Quantitative real-time PCR analysis showed that mRNA levels were upregulated in NLS-CA-Akt cells as compared to KD or EV cells. Furthermore, our FACS analysis demonstrated that overexpression of NLS-CA-Akt accumulate cells in the G1 phase within 24 h, fitting with the rapid sprouting of neuritis. Thus, our data implied that at least in this early time frame, the overexpression of nuclear, active Akt forced cells into neurite development through probably FOXQ1regulation.

Cytologic Features of Plasmacytoma of the Ovary and Breast Occurred in a Patient with Solitary Plasmacytoma of Vertebra - A Case Report - (척추의 단발성 형질세포종을 가진 환자에서 발생한 난소와 유방의 형질세포종의 세포학적 소견 - 1예 보고 -)

  • Park, Mi-Ok;Oh, Hoon-Kyu;Kim, Yong-Jin;Park, Jae-Bok
    • The Korean Journal of Cytopathology
    • /
    • v.8 no.2
    • /
    • pp.164-169
    • /
    • 1997
  • A case of plasmacytoma of the ovary and breast, which developed in a patient with a solitary plasmacytoma in the lumbar vertebra for nine months, was diagnosed cytologically and histologically. Enlargement of the right ovary and multiple palpable masses in the right and left breast were already present at six months after the diagnosis of vertebral solitary plasmacytoma. At eight months, plasma cell leukemia developed, and nine months the enlarged both ovaries, replaced by yellowish-gray solid tumors showed infiltration of immature plasma cells. The cytologic features of the ovarian tumors were same with those of the breast tumor. The tumor cells were of predominantly immature plasma cells with one or more nuclei. Some mature plasma cell had an eccentric nucleus with single nucleolus and peripherally clumped chromatin. Binucleated or multinucleated giant cells were often present. Histologically, sheets of poorly differentiated plasmacytoid tumor cells were separated by strands of hyaline fibrous tissue. On immunohistochemical stains, the tumor cells showed strong reactivity for lambda-light chain but no reaction for kappa-light chain, cytokeratin, or leukocyte common antigen.

  • PDF

Sensitization to Doxorubicin by Inhibition of the Nrf2-Antioxidant System (Doxorubicin 매개 세포독성에 대한 Nrf2 경로의 역할)

  • Cho, Jeong-Min;Park, Hyun-M;Kwak, Mi-Kyoung
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.67-72
    • /
    • 2008
  • The use of doxorubicin, which is one of the most effective anticancer agents, is often limited by occurrence of acquired resistance in tumor cells. GSH has been shown to be involved in the development of this drug resistance. Transcription factor Nrf2 governs the expression of GSH synthesizing glutamylcysteine ligase (GCL), as well as multiple phase 2 detoxifying enzymes. Here we show that Nrf2 is one of factors determining doxorubicin sensitivity. Nrf2-deficient fibroblasts (murine embryonic fibroblasts, MEF) were more susceptible to doxorubicin mediated cell death than wild-type cells. Doxorubicin treatment elevated levels of Nrf2-regulated genes including NAD(P)H: quinone oxidoreductase (Nqo1) and GCL in wild-type fibroblasts, while no induction was observed in Nrf2-deficient cells. Doxorubicin resistance in human ovarian SK-OV cells was reversed by treatment with L-buthionine-sulfoxamine (BSO), which is depleting intracellular GSH. Finally, transfection of SK-OV cells with Nrf2 siRNA resulted in exacerbated cytotoxicity following doxorubicin treatment compared to scrambled RNA control. These results indicate that the Nrf2 pathway, which plays a protective role in normal cells, can be a potential target to control cancer cell resistance to anticancer agents.

Turning Hepatic Cancer Stem Cells Inside Out - A Deeper Understanding through Multiple Perspectives

  • Chan, Lok-Hei;Luk, Steve T.;Ma, Stephanie
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.202-209
    • /
    • 2015
  • Hepatocellular carcinoma (HCC), a highly malignant disease and the third leading cause of all cancer mortalities worldwide, often responses poorly to current treatments and results in dismal outcomes due to frequent chemoresistance and tumor relapse. The heterogeneity of HCC is an important attribute of the disease. It is the outcome of many factors, including the cross-talk between tumor cells within the tumor microenvironment and the acquisition and accumulation of genetic and epigenetic alterations in tumor cells. In addition, there is accumulating evidence in recent years to show that the malignancy of HCC can be attributed partly to the presence of cancer stem cell (CSC). CSCs are capable to self-renew, differentiate and initiate tumor formation. The regulation of the stem cell-like properties by several important signaling pathways have been found to endow the tumor cells with an increased level of tumorigenicity, chemoresistance, and metastatic ability. In this review, we will discuss the recent findings on hepatic CSCs, with special emphasis on their putative origins, relationship with hepatitis viruses, regulatory signaling networks, tumor microenvironment, and how these factors control the stemness of hepatic CSCs. We will also discuss some novel therapeutic strategies targeted at hepatic CSCs for combating HCC and perspectives of future investigation.

Enhanced Sensitivity to Proteasome Inhibitor Bortezomib in Nrf2 Knockdown Ovarian Cancer Cells (Nrf2 영구 넉다운 난소암 세포주의 Proteasome 저해 항암제 Bortezomib에 대한 감수성 증가)

  • Lee, Sang-Hwan;Choi, Bo-Hyun;Kwak, Mi-Kyoung
    • YAKHAK HOEJI
    • /
    • v.55 no.6
    • /
    • pp.466-472
    • /
    • 2011
  • NF-E2-related factor 2 (Nrf2), a master regulator of antioxidant genes in animals, has been associated with the resistance of cancer cells to several cytotoxic chemotherapeutics. Bortezomib, a reversible inhibitor of the 26S proteasome, is a novel class anti-cancer therapeutics approved for the treatment of refractory multiple myeloma. However, the molecular mechanism of drug-resistance remains elusive. In the present study, bortezomib sensitivity has been investigated in Nrf2 knockdown ovarian cancer cells. When Nrf2 expression is stably repressed using interfering RNA expression, bortezomib-induced apoptosis and cell death were significantly enhanced compared to nonspecific RNA control cells. Knockdown cells showed elevated expression in the catalytic subunit PSMB5, PSMB6, and PSMB7 compared to the control, and failed to induce heme oxygenase-1 expression following bortezomib treatment. These indicate that differential proteasome levels and altered expression of stress-response genes could be underlying mechanisms of bortezomib sensitization in Nrf2-inhibited ovarian cancer cells.

Activation of the Caprine ${\beta}$-Lactoglobulin Gene Promoter by Lactogenic Hormones in Cultured Mammary HC11 Cells

  • Kim, Jae-Min;Yu, Myeong-Hui;Kim, Gyeong-Jin
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.603-608
    • /
    • 1997
  • Analysis of the 5'-regulatory sequence of the caprine ${\beta}$-lactoglobulin (BLG) gene promoter revealed that two different types of activation were mediated by discrete regions, from -740 to -470 and from -205 to 109, in cultured mammary HC11 cells. Activation mediated by the proximal region was observed regardless of cell growth status. Distal activation, however, was observed only after confluent growth of the cells and was enhanced by the lactogenic hormones. This activation was accompanied by appearance of binding activity of proteins to these regions in the mammary HC11 cells. The binding motifs were broadly distributed over the upstream regulatory sequence. Comparison of the binding regions and mutation analysis suggest that a binding motif homologous to the ${\gamma}$-interferon responsive element (${\gamma}$-IRE) is responsible for transcriptional activation by hormonal induction in the mammary HC11 cells. The multiple ${\gamma}$-IRE homologous motifs seem to play a significant role in enhancing mammary cell-specific activation of the caprine BLG gene.

  • PDF

Neuroprotective Effects of Berberine in Neurodegeneration Model Rats Induced by Ibotenic Acid

  • Lim, Jung-Su;Kim, Hyo-Sup;Choi, Yoon-Seok;Kwon, Hyock-Man;Shin, Ki-Soon;Joung, In-Sil;Shin, Mi-Jung;Kim, Yun-Hee
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.203-209
    • /
    • 2008
  • Berberine, an isoquinoline alkaloid found in Coptidis Rhizoma(goldenthread) extract, has multiple pharmacological effects such as anti-inflammatory, antimicrobial and anti-ischemic effects. In the present study, we examined the effects of berberine on neuronal survival and differentiation in a hippocampal precursor cell line and in the memory deficient rat model. Berberine increased in a dose dependent manner the survival of hippocampal precursor cells as well as differentiated cells. In addition, berberine promoted neuronal differentiation of hippocampal precursor cells. In the memory deficient rat model induced by stereotaxic injection of ibotenic acid into entorhinal cortex(Ibo model), hippocampal cells were increased about 2.7 fold in the pyramidal layer of CA1 region and about 2 fold in the dentate gyrus by administration of berberine after 2 weeks of ibotenic acid injection. Furthermore, neuronal cells immunoreactive to calbindin were increased in the hippocampus and entorhinal cortex area by administration of berberine. Taken together, these results suggest that berberine has neuroprotective effect in the Ibo model rat brain by promoting the neuronal survival and differentiation.

The Molecular Mechanism of Baicalin on RANKL-induced Osteoclastogenesis in RAW264.7 Cells

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.38 no.2
    • /
    • pp.67-72
    • /
    • 2013
  • This study examined the anti-osteoclastogenic effects of baicalin on receptor activator of NF-${\kappa}$B ligand (RANKL)-induced RAW264.7 cells. Baicalin is a flavonoid that is produced by Scutellaria baicalensis and is known to have multiple biological properties, including antibacterial, anti-inflammatory and analgesic effects. The effects of baicalin on osteoclasts were examined by measuring 1) cell viability; 2) the formation of tartrate-resistant acid phosphatase (TRAP) (+) multinucleated cells; 3) RANK/RANKL signaling pathways and 4) mRNA levels of osteoclast-associated genes. Baicalin inhibited the formation of RANKL-stimulated TRAP (+) multinucleated cells and also suppressed the RANKL-stimulated activation of p-38, ERK, cSrc and AKT signaling. Baicalin also inhibited the RANKL-stimulated degradation of $I{\kappa}B$ in RAW264.7 cells. In addition, the RANKL-stimulated induction of NFATc1 transcription factors was found to be abrogated by this flavonoid. Baicalin was further found to decrease the mRNA expression of osteoclast-associated genes, including carbonic anhydrase II, TRAP and cathepsin K in the RAW264.7 cells. Our data thus demonstrate that baicalin inhibits osteoclastogenesis by inhibiting the RANKL-induced activation of signaling molecules and transcription factors in osteoclast precursors.

Apoptosis Induction Effect of Zingiberis Rhizoma Extract in Microglia BV-2 Cells

  • Seo, Jeongbin;Oh, Myung Sook;Jang, Young Pyo;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Microglia have multiple functions in regulating homeostasis of the central nervous system. Microglia cells have been implicated as active contributors to neuron damage in neurodegenerative disorders. In this study, medicinal plant extracts (MPEs) were used to evaluate the cell-death induction effect in microglia BV-2 cells. Among 35 MPEs tested in this study, 4 MPEs showed less than a 30% cell survival after 24 hours of incubation. These were Foeniculi Fructus, Forsythiae Fructus, Zingiberis Rhizoma and Hedera Rhombea. The concentration showed that 50% cell death ($IC_{50}$) occurred with 33, 83, 67 Ed highlight: Please confirm wording, and $81{\mu}/ml$, respectively. For further study, we chose Zingiberis Rhizoma (ZR) which showed a reasonably low $IC_{50}$ value and an induction of cell death in a relatively narrow range. Western blot analysis showed that ZR-treated cells showed activation of caspase-3 and cleavage of PARP Ed highlight: When an acronym is first presented it needs to be spelled out in both dose- and time-dependent manners. However, the level of Bcl-2 and Bax were not changed by ZR-treatment in BV-2 cells. These results suggest that ZR-induced apoptosis in BV-2 cells occured through caspase-3 activation. The results also suggested that ZR may be useful in developing treatments for neurodegenerative diseases.

Olig2 Transcription Factor in the Developing and Injured Forebrain; Cell Lineage and Glial Development

  • Ono, Katsuhiko;Takebayashi, Hirohide;Ikenaka, Kazuhiro
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.397-401
    • /
    • 2009
  • Olig2 transcription factor is widely expressed throughout the central nervous system; therefore, it is considered to have multiple functions in the developing, mature and injured brain. In this mini-review, we focus on Olig2 in the forebrain (telencephalon and diencephalon) and discuss the functional significance of Olig2 and the differentiation properties of Olig2-expressing progenitors in the development and injured states. Short- and long-term lineage analysis in the developing forebrain elucidated that not all late Olig2+ cells are direct cohorts of early cells and that Olig2 lineage cells differentiate into neurons or glial cells in a region- and stage-dependent manner. Olig2-deficient mice revealed large elimination of oligodendrocyte precursor cells and a decreased number of astrocyte progenitors in the dorsal cortex, whereas no reduction in the number of GABAergic neurons. In addition to Olig2 function in the developing cortex, Olig2 is also reported to be important for glial scar formation after injury. Thus, Olig2 can be essential for glial differentiation during development and after injury.