DOI QR코드

DOI QR Code

The Molecular Mechanism of Baicalin on RANKL-induced Osteoclastogenesis in RAW264.7 Cells

  • Ko, Seon-Yle (Department of Oral biochemistry and Institute of Dental Science, Dankook University)
  • Received : 2013.04.03
  • Accepted : 2013.04.25
  • Published : 2013.06.30

Abstract

This study examined the anti-osteoclastogenic effects of baicalin on receptor activator of NF-${\kappa}$B ligand (RANKL)-induced RAW264.7 cells. Baicalin is a flavonoid that is produced by Scutellaria baicalensis and is known to have multiple biological properties, including antibacterial, anti-inflammatory and analgesic effects. The effects of baicalin on osteoclasts were examined by measuring 1) cell viability; 2) the formation of tartrate-resistant acid phosphatase (TRAP) (+) multinucleated cells; 3) RANK/RANKL signaling pathways and 4) mRNA levels of osteoclast-associated genes. Baicalin inhibited the formation of RANKL-stimulated TRAP (+) multinucleated cells and also suppressed the RANKL-stimulated activation of p-38, ERK, cSrc and AKT signaling. Baicalin also inhibited the RANKL-stimulated degradation of $I{\kappa}B$ in RAW264.7 cells. In addition, the RANKL-stimulated induction of NFATc1 transcription factors was found to be abrogated by this flavonoid. Baicalin was further found to decrease the mRNA expression of osteoclast-associated genes, including carbonic anhydrase II, TRAP and cathepsin K in the RAW264.7 cells. Our data thus demonstrate that baicalin inhibits osteoclastogenesis by inhibiting the RANKL-induced activation of signaling molecules and transcription factors in osteoclast precursors.

Keywords

References

  1. Parfitt AM. Skeletal heterogeneity and the purposes of bone remodeling: Implications for the understanding of osteoporosis. Marcus R, Feldman D, Kelsey J. Osteoporosis. San Diego, CA, Academic, 1996;315-339.
  2. Parfitt AM. Targeted and non-targeted bone remodeling: Relationship to basic multicellular unit origination and progression. Bone 2002;30:5-7. https://doi.org/10.1016/S8756-3282(01)00642-1
  3. Findlay DM, Haynes DR. Mechanisms of bone loss in rheumatoid arthritis. Mod Rheumatol. 2005;15:232-240. https://doi.org/10.3109/s10165-005-0412-z
  4. Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005;11:76-81. https://doi.org/10.1016/j.molmed.2004.12.004
  5. Gass M, Dawson-Hughers B. Preventing osteoporosisrelated fractures: an overview. Am J Med. 2006;119: S3-S11.
  6. Howell A, Evans GD. Hormone replacement therapy and breast cancer. Recent Results Cancer Res. 2011;188:115-124.
  7. Wu YW, Chen SC, Lai WF, Chen YC, Tsai YH. Screening of flavonoids for effective osteoclastogenesis suppression. Anal Biochem. 2013;433:48-55. https://doi.org/10.1016/j.ab.2012.10.008
  8. Guo AJ, Choi RC, Cheung AW, Chen VP, Xu SL, Dong TT, Chen JJ, Tsim KW. Baicalin, a flavone, induces the differentiation of cultured osteoblasts: an action via the Wnt/beta-catenin signaling pathway. J Biol Chem. 2011; 286:27882-27893. https://doi.org/10.1074/jbc.M111.236281
  9. Kimura M, Arai Y, Shimoi K, Watanabe S. Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol 1998;8:168-175. https://doi.org/10.2188/jea.8.168
  10. Weaver CM, Alekel DL, Ward WE, Ronis MJ. Flavonoid intake and bone health. J Nutr Gerontol Geriatr. 2012;31: 239-253. https://doi.org/10.1080/21551197.2012.698220
  11. Ming LG, Lv X, Ma XN, Ge BF, Zhen P, Song P, Zhou J, Ma HP, Xian CJ, Chen KM. The prenyl group contributes to activities of phytoestrogen 8-prenynaringenin in enhancing bone formation and inhibiting bone resorption in vitro. Endocrinology. 2013;154:1202-1214. https://doi.org/10.1210/en.2012-2086
  12. Jang YJ, Kim ME, Ko SY. n-Butanol extracts of Panax notoginseng suppress LPS-induced MMP-2 expression in periodontal ligament fibroblasts and inhibit osteoclastogenesis by suppressing MAPK in LPS-activated RAW264.7 cells. Arch Oral Biol. 2011;56:1319-1327. https://doi.org/10.1016/j.archoralbio.2011.05.010
  13. Ko SY. Effects of Baicalin on the differentiation and activity of preosteoclasts. Int J Oral Biol. 2009;34:81-86.
  14. Wang GF, Wu ZF, Wan L, Wang QT, Chen FM. Influence of baicalin on the expression of receptor activator of nuclear factor-kappaB ligand in cultured human periodontal ligament cells. Pharmacology. 2006;77:71-77. https://doi.org/10.1159/000092853
  15. Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52:673-751
  16. Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22:19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957
  17. Cazarolli LH, Zanatta L, Alberton EH, Figueiredo MS, Folador P, Damazio RG, Pizzolatti MG, Silva FR. Flavonoids: prospective drug candidates. Mini Rev Med Chem. 2008;8:1429-1440. https://doi.org/10.2174/138955708786369564
  18. Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138:2099-2107. https://doi.org/10.1016/j.foodchem.2012.11.139
  19. Makimura M, Hirasawa M, Kobayashi K, Indo J, Sakanaka S, Taguchi T, Otake S. Inhibitory effect of tea catechins on collagenase activity. J Periodontol. 1993;64:630-636. https://doi.org/10.1902/jop.1993.64.7.630
  20. Bodet C, Grenier D, Chandad F, Ofek I, Steinberg D, Weiss EI. Potential oral health benefits of cranberry. Crit Rev Food Sci Nutr. 2008;48:672-680. https://doi.org/10.1080/10408390701636211
  21. Shigeyama Y, Pap T, Kunzler P, Simmen BR, Gay RE, Gay S. Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum. 2000;43:2523-2530. https://doi.org/10.1002/1529-0131(200011)43:11<2523::AID-ANR20>3.0.CO;2-Z
  22. Hotokezaka H. Sakai, E, Ohara N, Hotokezaka Y, Gonzales C, Matsuo K-I, Fujimura Y, Yoshida N, Nakayama K. Molecular analysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF- α, lipopolysaccharide, or peptidoglycan. J Cell Biochem 2007;101:122-134. https://doi.org/10.1002/jcb.21167
  23. Lee SE, Woo KM, Kim SY, Kim HM, Kwack K, Lee ZH, Kim HH. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone. 2002;30:71-77.
  24. Li X, Udagawa N, Itoh K, Suda K, Murase Y, Nishihara T, Suda T, Takahashi N. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology. 2002;143:3105-3113. https://doi.org/10.1210/endo.143.8.8954
  25. Lowe C, Yoneda T, Boyce BF, Chen H, Mundy GR, Soriano P. Osteopetrosis in Src-deficient mice is due to an autonomous defect of osteoclasts. Proc Natl Acad Sci USA. 1993;90:4485-4489. https://doi.org/10.1073/pnas.90.10.4485
  26. Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R. Src kinase activity is essential for osteoclast function. J Biol Chem. 2004;279:17660-17666. https://doi.org/10.1074/jbc.M311032200
  27. Lee SE, Chung WJ, Kwak HB, Chung CH, Kwack KB, Lee ZH, Kim HH. Tumor necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem. 2001;276:49343-49349. https://doi.org/10.1074/jbc.M103642200
  28. Iotsova V, Caamaño J, Loy J, Yang Y, Lewin A, Bravo R. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappa B2. Nat Med. 1997;3:1285-1289. https://doi.org/10.1038/nm1197-1285
  29. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996; 14:649-683. https://doi.org/10.1146/annurev.immunol.14.1.649
  30. Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med. 2005; 202:1261-1269. https://doi.org/10.1084/jem.20051150
  31. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3:889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  32. Laitala T, Vaananen K. Proton channel part of vacuolar H(+)-ATPase and carbonic anhydrase II expression is stimulated in resorbing osteoclasts. J Bone Miner Res. 1993;8:119-126.
  33. Troen BR. The regulation of cathepsin K gene expression. Ann N Y Acad Sci. 2006;1068:165-172. https://doi.org/10.1196/annals.1346.018