An extended version of the minimax eccentricity factor estimation for multiple set case is proposed. In addition, two more simple methods for multiple set factor analysis exploiting the concept of generalized canonical correlation analysis is suggested. Finally, a certain connection between the generalized canonical correlation analysis and the multiple set factor analysis is derived which helps us clarify the relationship.
Journal of the Korean Data and Information Science Society
/
제16권1호
/
pp.95-106
/
2005
Complete-case analysis is easy to carry out and it may be fine with small amount of missing data. However, this method is not recommended in general because the estimates are usually biased and not efficient. There are numerous alternatives to complete-case analysis. A natural alternative procedure is available-case analysis. Available-case analysis uses all cases that contain the variables required for a specific task. The EM algorithm is a general approach for computing maximum likelihood estimates of parameters from incomplete data. These methods and multiple imputation(MI) are reviewed and the performances are compared by simulation studies in monotone missing pattern.
Journal of the Korean Data and Information Science Society
/
제15권4호
/
pp.993-1002
/
2004
Imputation procedures such as fully efficient fractional imputation(FEFI) or multiple imputation(MI) can be used to construct complete contingency tables from samples with partially classified responses. Variances of FEFI estimators of population proportions are derived. Simulation results, when data are missing completely at random, reveal that FEFI provides more efficient estimates of population than either multiple imputation(MI) based on data augmentation or complete case analysis, but neither FEFI nor MI provides an improvement over complete-case(CC) analysis with respect to accuracy of estimation of some parameters for association between two variables like $\theta_{i+}\theta_{+i}-\theta_{ij}$ and log odds-ratio.
Communications for Statistical Applications and Methods
/
제23권3호
/
pp.231-239
/
2016
A graphical diagnostic method based on multiple case deletions in a regression context is introduced by using the sampling distribution of the difference between two least squares estimators with and without multiple cases. Principal components analysis plays a key role in deriving this diagnostic method. Multiple case deletions of test statistic are also considered when a new observation is fitted to a given regression model. The result is useful for detecting influential observations in econometric data analysis, for example in checking whether the consumption pattern at a later time is the same as the one found before or not, as well as for investigating the influence of cases in the usual regression model. An illustrative example is given.
This paper presents deterministic, worst-case analysis of a queueing system whose multiple homogeneous input streams are regulated by the associated leaky buckets and the queueing system that has a single stream regulated by the jumping-window. Queueing delay averaged over all items is used for performance measure, and the worst-case input traffic and the worst-case performance are identified for both queueing systems. For the former queueing system, the analysis explores different phase relations among leaky-bucket token generations. This paper observes how the phase differences among the leaky buckets affect the worst-case queueing performance. Then, this paper relates the worst-case performance of the former queueing system with that of the latter (the single stream case, as in the aggregate streams from many users, whose item arrivals are regulated by one jumping-window). It is shown that the worst-case performance of the latter is identical to that of the former in which all leaky buckets have the same phase and have particular leaky bucket parameters.
The purpose of this paper is to compare several forecasting methods for the case of the cement product by the analysis of the forecasting data and by the study of major forecasting methods, which are the Trend Projection, Exponential Smoothing, and Multiple Regression Analysis. As a result, it is thought that the Multiple Regression Analysis is the optimal model for the case of the cement product. In addition, it is important to consider the future circumstances for forecasting, and to improve the level of the forecasting results through the precise analysis of the collected data.
In this paper, the performance of the various multiple access techniques for the mobile computer network has been studiedi in the consideration of the charactersitics of the mobile cimmunication channel. In the case of the hidden node occurring. It could be seen that the performance of the code division multiple access (CDMA) technique with simultaneous access function is better than that of the other packet access methods such as carrier sendsed multiple access (CDMA), busy tone multiple access (BTMA) and idle signal multiple access (ISMA) in the view of the throughput and mean delay time. Also, it has been shown that the performance of the CDMA method is superior to that of other packet access techniques such as multiple access (CSMA), etc. when the fading effect or impulsive noise exists in the mobile channel, Especially, in the case of the distributed mobile network it has been shown that the receivertransmitter based CDMA method using the characteristics of CDMA effectively has better throughput and less mean delay time than the commontransmitter based CDMA technique.
The purpose of this paper is to analyze the relationship between meteorological factors and agricultural reservoir storage, and predict the reservoir storage by multiple regression equation selected by high correlated meteorological factors. Two agricultural reservoirs (Geumgwang and Gosam) located in the upsteam of Gongdo water level gauging station of Anseong-cheon watershed were selected. Monthly reservoir storage data and meteorological data in Suwon weather station of 21 years (1985-2005) were collected. Three cases of correlation (case 1: yearly mean, case 2: seasonal mean dividing a year into 3 periods, and case 3: lagging the reservoir storage from 1 month to 3 months under the condition of case 2) were examined using 8 meteorological factors (precipitation, mean/maximum/minimum temperature, relative humidity, sunshine hour, wind velocity and evaporation). From the correlation analysis, 4 high correlated meteorological factors were selected, and multiple regression was executed for each case. The determination coefficient ($R^{2}$) of predicted reservoir storage for case 1 showed 0.45 and 0.49 for Geumgwang and Gosam reservoir respectively. The predicted reservoir storage for case 2 showed the highest $R^{2}$ of 0.46 and 0.56 respectively in the period of April to June. The predicted reservoir storage for 1 month lag of case 3 showed the $R^{2}$ of 0.68 and 0.85 respectively for the period of April to June. The results showed that the status of agricultural reservoir storage could be expressed with couple of meteorological factors. The prediction enhanced when the storage data are divided into periods rather than yearly mean and especially from the beginning time of paddy irrigation (April) to high decrease of reservoir storage (June) before Jangma.
Coquet, Julia Becaria;Tumas, Natalia;Osella, Alberto Ruben;Tanzi, Matteo;Franco, Isabella;Diaz, Maria Del Pilar
Asian Pacific Journal of Cancer Prevention
/
제17권10호
/
pp.4567-4575
/
2016
A number of studies have evidenced the effect of modifiable lifestyle factors such as diet, breastfeeding and nutritional status on breast cancer risk. However, none have addressed the missing data problem in nutritional epidemiologic research in South America. Missing data is a frequent problem in breast cancer studies and epidemiological settings in general. Estimates of effect obtained from these studies may be biased, if no appropriate method for handling missing data is applied. We performed Multiple Imputation for missing values on covariates in a breast cancer case-control study of $C{\acute{o}}rdoba$ (Argentina) to optimize risk estimates. Data was obtained from a breast cancer case control study from 2008 to 2015 (318 cases, 526 controls). Complete case analysis and multiple imputation using chained equations were the methods applied to estimate the effects of a Traditional dietary pattern and other recognized factors associated with breast cancer. Physical activity and socioeconomic status were imputed. Logistic regression models were performed. When complete case analysis was performed only 31% of women were considered. Although a positive association of Traditional dietary pattern and breast cancer was observed from both approaches (complete case analysis OR=1.3, 95%CI=1.0-1.7; multiple imputation OR=1.4, 95%CI=1.2-1.7), effects of other covariates, like BMI and breastfeeding, were only identified when multiple imputation was considered. A Traditional dietary pattern, BMI and breastfeeding are associated with the occurrence of breast cancer in this Argentinean population when multiple imputation is appropriately performed. Multiple Imputation is suggested in Latin America's epidemiologic studies to optimize effect estimates in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.